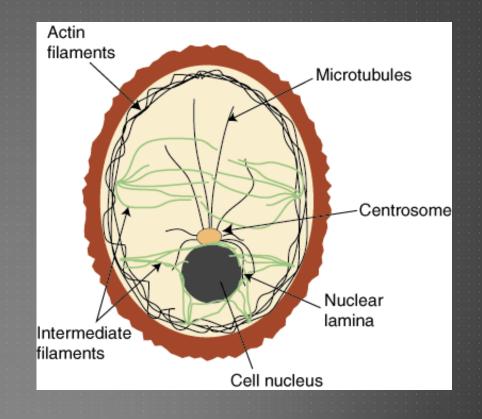
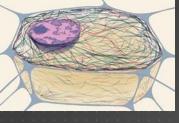
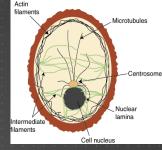
TIME-DEPENDENT MECHANICAL RESPONSE OF THE CYTOSKELETON

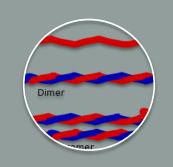

Nasrin Afzal Michel Pleimling Department of Physics, Virginia Tech SESAPS 2011



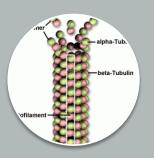
Supported in part by NSF through Grant DMR-0904999


CONTENTS:

Cytoskeleton(CSK) Motivation The Model Results

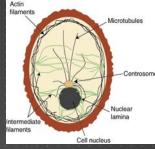


PROPERTIES OF PROTEIN FILAMENTS

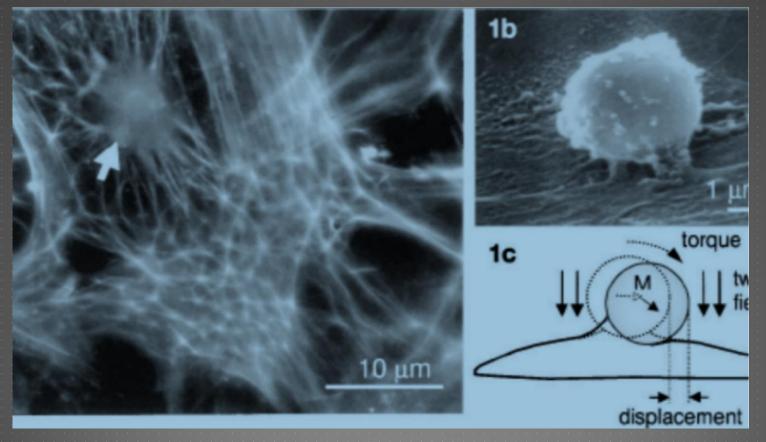


er nt ARP2/3 complex

Actin Diameter=6*nm* Pers. Length=3-10μm Double helix

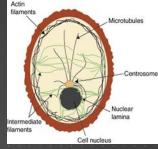

Intermediate filament Diameter=8-10*nm* Pers. Length= 0.3-1*µm* 2 antiparallel helix

Microtubule Diameter=23nm Pers. Length=1-8mm Hollow cylinder

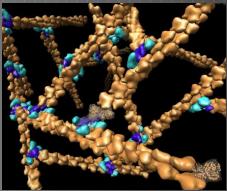


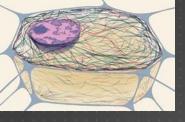
CSK ROLL IN THE CELL

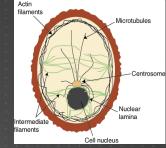
Establishing cell shape
Providing mechanical strength
Locomotion
Chromosome separation in mitoses and meiosis
Cellular division
Intracellular transport of organelles


MOTIVATION

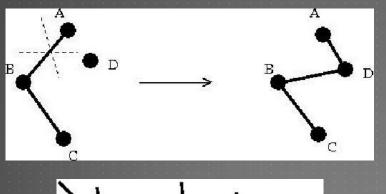
B. Fabry et al,. Phys. Rev. Lett. 87, 148102 (2001)

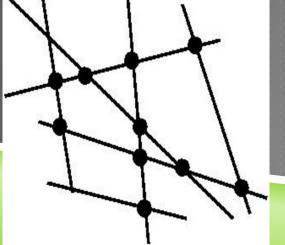



COMPUTATIONAL MODEL

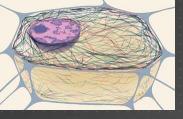

> 3D model of actin network
> Periodic and Free boundary conditions
> Create the network out of equilibrium
> Relax by Monte Carlo movements
> Perturb the cell

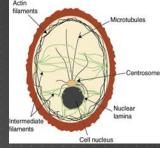
E.M Huisman et al., Phys. Rev. E 78, 051801 (2008)




INITIAL STEPS OF THE MODEL

connected network

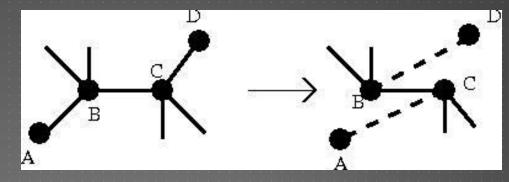

Creation of four fold
 Assign polymer length for each segment



J. Wilhelm and E. Frey, PRL(77) 2581 (1996)

ENERGY OF THE SYSTEM

Energy is sum over all the segments energy,


$$\frac{E}{L_{B}T} = \sum_{i} \frac{\mu}{2} \left(r_{i} - r_{0,i} \right)^{2} + \sum_{i,j} \frac{l_{p}}{l_{c,i} + l_{c,j}} \theta_{i,j}^{2}$$

μ: Stretching Coefficient

- r_i : End to end length
- r_{0,i} : End to end equilibrium length
- ▶ l_p: Persistence Length of the filament
- ▶ l_{c,i} : Polymer length
- \triangleright $\theta_{i,j}$: Angle between segment i and j

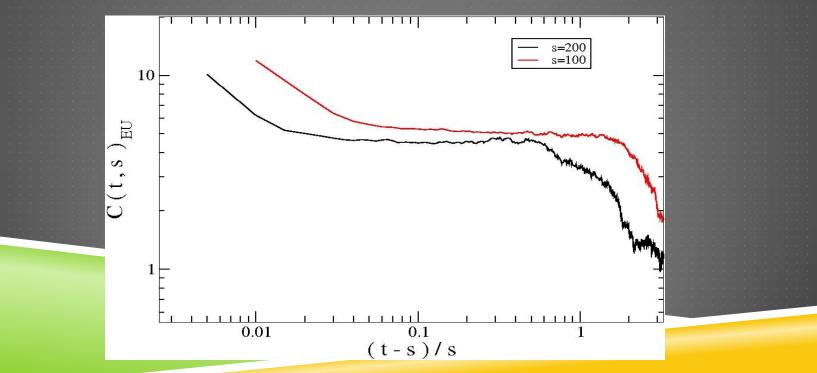
RELAX THE SYSTEM BY MONTE CARLO MOVES

Rewiring

Chop entangled initial filament

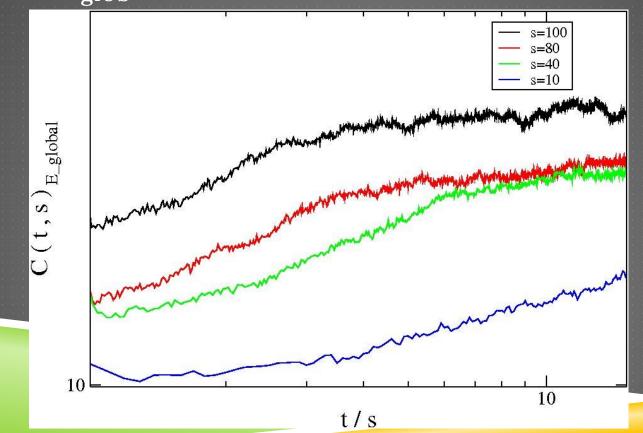
Relabeling

Shifting Nodes

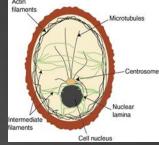

$\begin{array}{c} B \\ \Theta_{1} \\ \Theta_{2} \\ A \end{array} \xrightarrow{D} \\ A \longrightarrow \\ B \longrightarrow \\ B \longrightarrow \\ D \longrightarrow \\ D \longrightarrow \\ B \longrightarrow \\ B \longrightarrow \\ D \longrightarrow \\ B \longrightarrow \\$

CELL PERTURBATION AND AUTO CORRELATION

▶ Shear the cell,


Two step relaxation

 $C(t,s)_{ED} = < L(t)L(s) > - < L(t) > < L(s) >$


AUTO CORRELATION FUNCTION

Global Energy $C(t, s)_{E_{glob}} = \langle E(t) E(s) \rangle - \langle E(t) \rangle \langle E(s) \rangle$

FUTURE PLANS

Look at the response of the system
Study the role of the membrane
Add flexible crosslinks
Add entanglement points for each segment

