Hadron Spectroscopy at Jefferson Lab: Search for new States of Hadronic Matter

Volker Credé

Florida State University Tallahassee, FL

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

SESAPS 2011

Roanoke, VA, 10/20/2011

Outline

- Quarks, QCD, and Confinement
- Complete Experiments for Baryons
- (Preliminary) Results from CLAS
 - The CLAS Spectrometer at JLab
 - Photon Beam Asymmetries
 - Double-Polarization Experiments (FROST)

- 3 Meson Spectroscopy in Photoproduction
 - The GlueX Experiment
 - 4 Summary and Outlook

< 🗇 🕨

Introduction

(Preliminary) Results from CLAS Meson Spectroscopy in Photoproduction Summary and Outlook Quarks, QCD, and Confinement Complete Experiments for Baryons

Outline

- Quarks, QCD, and Confinement
- Complete Experiments for Baryons
- (Preliminary) Results from CLAS
 The CLAS Spectrometer at JLab
 Photon Beam Asymmetries
 - Double-Polarization Experiments (FROST)

- Meson Spectroscopy in Photoproduction
 The GlueX Experiment
- Summary and Outlook

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ∢ ⊒ →

Quarks, QCD, and Confinement Complete Experiments for Baryons

QCD and Confinement

From about 10^{-6} s on, all quark and anti-quarks became confined inside of hadronic matter. Only protons and neutrons remained after about 1 s.

- What is the origin of confinement?
- How are confinement and chiral symmetry breaking connected?
- Would the answers to these questions explain the origin of \sim 99 % of observed matter?

Quarks, QCD, and Confinement Complete Experiments for Baryons

Non-Perturbative QCD

Courtesy of Craig Roberts, Argonne

How does QCD give rise to hadrons?

Interaction between quarks unknown throughout > 98% of a hadron's volume.

Explaining the excitation spectrum of hadrons is central to our understanding of QCD in the low-energy regime (Hadron Models, Lattice QCD, etc.)

Complementary to Deep Inelastic Scattering (DIS) where information on collective degrees of freedom is lost.

Quarks, QCD, and Confinement Complete Experiments for Baryons

The (Experimental) Issues with Hadrons

Baryons

What are the fundamental degrees of freedom inside a proton or a neutron? How do they change with varying quark masses?

2 Mesons

What is the role of glue in a quark-antiquark system and how is this related to the confinement of QCD?

What are the properties of predicted states beyond simple quark-antiquark systems (hybrids, glueballs, multi-quark states, ...)?

→ Need to map out new states: BES III, BELLE, COMPASS, Panda@GSI, GlueX@Jefferson Lab, ...

→ E → < E →</p>

Quarks, QCD, and Confinement Complete Experiments for Baryons

Aerial View of Jefferson Laboratory

Quarks, QCD, and Confinement Complete Experiments for Baryons

One of the Goals of the Excited N* Program ...

... is the search for missing or yet unobserved baryon resonances.

Quark models predict many more baryons than have been observed.

	* * **	* * *	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

- → Particle Data Group (J. Phys. G 37, 075021 (2010))
- → little known (many open questions left)
- → Are the states missing because our models do not capture the correct degrees of freedom? Or have the resonances simply escaped detection?

Quarks, QCD, and Confinement Complete Experiments for Baryons

Spectrum of Nucleon Resonances

- S. Capstick and N. Isgur, Phys. Rev. D34 (1986) 2809

V. Credé Hadron Spectroscopy at Jefferson Lab

Quarks, QCD, and Confinement Complete Experiments for Baryons

Excited-State Baryon Spectroscopy from Lattice QCD

R. Edwards et al., arXiv:1104.5152 [hep-ph]

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Counting of levels consistent with non-rel. quark model, no parity doubling

Quarks, QCD, and Confinement Complete Experiments for Baryons

Extraction of Resonance Parameters

- Double-polarization measurements
- Measurements off neutron and proton to resolve isospin contributions:

$$\bigcirc \ \mathcal{A}(\gamma N \to \pi, \ \eta, \ \mathcal{K})^{l=3/2} \quad \Longleftrightarrow \quad \Delta^*$$

2
$$\mathcal{A}(\gamma N \to \pi, \ \eta, \ K)^{l=1/2} \iff N^{\gamma}$$

 Re-scattering effects: Large number of measurements (and reaction channels) needed to define full scattering amplitude.

Coupled Channels

http://ebac-theory.jlab.org

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Outline

Quarks, QCD, and Confinement

- Complete Experiments for Baryons
- (Preliminary) Results from CLAS
 - The CLAS Spectrometer at JLal
 - Photon Beam Asymmetries

- Meson Spectroscopy in Photoproduction
 The GlueX Experiment
- Summary and Outlook

g8b

CLAS (Polarization) Run Periods: Photoproduction

- g1c: C_x and C_z , I^{\odot} for $\gamma p \rightarrow p \pi^+ \pi^-$ (circ.-pol. beam, mostly published)
- **q8b**: Σ , I^s and I^c (lin.-pol. beam, H₂)
- FROST (g9a, g9b) (double pol., C_4H_9OH)
- g13 (lin.-pol. beam, D₂)

- HD-ICE
 - ➔ future measurements (Fall 2011)

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

CEBAF Large Acceptance Spectrometer (CLAS)

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Isospin Filter: $\gamma p \rightarrow N^* (I = 1/2) \rightarrow p \omega$

Strong evidence for (W < 2 GeV): (3/2)- N(1700) *** (5/2)+ N(1680) ***

Only nucleon resonances can contribute (isospin filter)

- First-time PWA of ω photoproduction channel
- High statistics data sets are key to pull out signals.
 - → CLAS at JLab can provide statistics, but there are also limitations in the acceptance.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

The CLAS Spectrometer at JLab

Isospin Filter: $\gamma p \rightarrow N^* (I = 1/2) \rightarrow p \omega$

M. Williams et al. [CLAS Collaboration], Phys. Rev. C 80, 065209 (2009) σ (h b) ∆ ¢ (radians 2 Pole K-Matrix[F₁₅(1680+2000)]/G₁₇(2190) total F15(1950)/G (219 F15(1680)/G_(2190) 2200 2000 2200 2000 W (MeV) W (MeV)

PWA fit includes resonances + t-channel amplitudes.

Strong evidence for (W > 2 GeV):

(5/2)+ N(1680) ****

```
(5/2)+ N(1950) **
```

(7/2)-N(2190) ****

Only nucleon resonances can contribute (isospin filter)

- 0 First-time PWA of ω photoproduction channel
- ٠ High statistics data sets are key to pull out signals.

2400

→ CLAS at JLab can provide statistics, but there are also limitations in the acceptance.

イロト イポト イヨト イヨト

Hints for a missing state!

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Isospin Filter: $\gamma p \rightarrow N^* (I = 1/2) \rightarrow p \omega$

M. Williams et al. [CLAS Collaboration], Phys. Rev. C 80, 065209 (2009)

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Beam Asymmetry Measurements: CLAS g8b

- $\gamma p \rightarrow p \pi^0$, $n \pi^+$ (M. Dugger *et al.*) Arizona State University
- $\gamma p \rightarrow p \eta, \eta'$ (P. Collins *et al.*) Arizona State University
- $\gamma p \rightarrow p \omega$ (P. Collins *et al.*) Catholic University
- $\gamma p \rightarrow p \pi^+ \pi^-$ (C. Hanretty *et al.*) Florida State University
- $\gamma p \rightarrow p \phi$ (J. Salamanca *et al.*) Idaho State University
- γp → K⁺Y (C. Paterson *et al.*) University of Edinburgh, Glasgow

イロト イポト イヨト イヨト

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Beam Asymmetry Σ in $\vec{\gamma} \boldsymbol{\rho} \rightarrow \boldsymbol{\rho} \pi^0$

M. Dugger (ASU), CLAS g8b run group, to be published

- $\begin{aligned} \frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} &= \sigma_0 \left\{ \,\mathbf{1} \,\delta_I \,\mathbf{\Sigma} \cos 2\phi \right. \\ &+ \,\Lambda_x \left(-\delta_I \,\mathbf{H} \sin 2\phi \,+\,\delta_\odot \,\mathbf{F} \right) \\ &- \,\Lambda_y \left(-\mathbf{T} \,+\,\delta_I \,\mathbf{P} \cos 2\phi \right) \\ &- \,\Lambda_z \left(-\,\delta_I \,\mathbf{G} \sin 2\phi \,+\,\delta_\odot \,\mathbf{E} \right) \right\} \end{aligned}$
- SAID MAID CLAS ($E_{\gamma} < 2 \text{ GeV}, -0.85 < \cos \theta_{\pi} < -0.35$)
- → Serious discrepancies between models and data above 1.4 GeV.

・ロト ・ 理 ト ・ ヨ ト ・

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Beam Asymmetry Σ in $\vec{\gamma} \boldsymbol{\rho} \rightarrow \boldsymbol{\rho} \pi^0$

M. Dugger (ASU), CLAS g8b run group, to be published

- SAID - MAID • CLAS ($E_{\gamma} < 2 \text{ GeV}, 0.35 < \cos \theta_{\pi} < 0.85$)

Combination of $p \pi^0$ and $n \pi^+$ final states can help distinguish between Δ and N^* resonances:

$$\pi^{0} + p : \sqrt{2/3} | I = \frac{3}{2}, I_{3} = \frac{1}{2} \rangle - \sqrt{1/3} | I = \frac{1}{2}, I_{3} = \frac{1}{2} \rangle$$

$$\pi^{+} + n : \sqrt{1/3} \left| I = \frac{3}{2}, I_3 = \frac{1}{2} \right\rangle + \sqrt{2/3} \left| I = \frac{1}{2}, I_3 = \frac{1}{2} \right\rangle$$

→ E > < E >

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST

Beam Asymmetry Σ in $\gamma p \rightarrow p \pi^0$ and $\gamma p \rightarrow n \pi^+$

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Beam-Target Polarization Observables

$$I = I_0 \{ (\mathbf{1} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}) + \delta_{\odot} (\mathbf{I}^{\odot} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}^{\odot}) + \delta_I [\sin 2\beta (\mathbf{I}^{\mathbf{s}} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}^{\mathbf{s}}) + \cos 2\beta (\mathbf{I}^{\mathbf{c}} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}^{\mathbf{c}})] \}$$

V. Roberts et al., Phys. Rev. C 71, 055201 (2005)

Double-Meson
 Final States
 (15 Observables)

At higher excitation energies: Multi-meson final states play an increasingly important role.

→ Search for states in cascades!

Photoproduction of $\pi^+\pi^-$ off the Proton: Kinematics

Two mesons in the final state require 5 independent variables!

For example: E_{γ} , $\Theta_{c.m.}$, ϕ^* , θ^* , $M_{p+meson_1}$

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

I^{s} in $\gamma p \rightarrow p \pi^{+} \pi^{-}$ 1100 < E_{γ} < 1150 MeV

V. Credé Hadron Spectroscopy at Jefferson Lab

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

$I^{\rm s}$ in $\gamma p \rightarrow p \pi^+ \pi^-$ 1100 < E_{γ} < 1150 MeV

V. Credé H

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

l^{s} in $\gamma p \rightarrow p \pi^{+} \pi^{-}$ 1150 $< E_{\gamma} <$ 1200 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

$l^{\rm s}$ in $\gamma p ightarrow p \pi^+ \pi^-$ 1200 $< E_{\gamma} <$ 1250 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

$l^{\rm s}$ in $\gamma p \rightarrow p \pi^+ \pi^-$ 1250 $< E_{\gamma} <$ 1300 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

$I^{\rm s}$ in $\gamma p \rightarrow p \pi^+ \pi^-$ 1300 $< E_{\gamma} <$ 1350 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

$l^{\rm s}$ in $\gamma p \rightarrow p \pi^+ \pi^-$ 1350 $< E_{\gamma} <$ 1400 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

l^{s} in $\gamma p \rightarrow p \pi^{+} \pi^{-}$ 1400 $< E_{\gamma} <$ 1450 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

l^{s} in $\gamma p \rightarrow p \pi^{+} \pi^{-}$ 1450 $< E_{\gamma} <$ 1500 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

$l^{\rm s}$ in $\gamma p \rightarrow p \pi^+ \pi^-$ 1500 $< E_{\gamma} <$ 1550 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

l^{s} in $\gamma p \rightarrow p \pi^{+} \pi^{-}$ 1550 $< E_{\gamma} <$ 1600 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

l^s in $\gamma p \rightarrow p \pi^+ \pi^-$ 1600 $< E_{\gamma} <$ 1650 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

$l^{\rm s}$ in $\gamma p ightarrow p \pi^+ \pi^-$ 1650 $< E_{\gamma} <$ 1700 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

$l^{\rm s}$ in $\gamma p ightarrow p \pi^+ \pi^-$ 2050 $< E_{\gamma} <$ 2100 MeV

V. Credé

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Double-Polarization at JLab: CLAS-FROST

FRozen-Spin Target (FROST)

- $P_z \approx 80\%$
- Relaxation time \sim 2,000 h
- Holding mode (B = 0.5 T, $T \approx 28$ mK)

- $\gamma p \rightarrow p \eta$ (Dugger, Morrison *et al.*) Arizona State University
- γp → pω (Collins, Vernarsky et al.)
 Catholic University, Carnegie Mellon
- $\gamma p \rightarrow n \pi^+$ (*E*) (S. Strauch *et al.*) University of South Carolina
- $\gamma p \rightarrow n \pi^+$ (G) (J. McAndrew *et al.*) University of Edinburgh
- γp → pπ⁰ (H. Iwamoto *et al.*)
 George Washington University
- $\gamma p \rightarrow p \pi^+ \pi^-$ (S. Park *et al.*) Florida State University
- γp → K⁺ Y (S. Fegan *et al.*) University of Glasgow

・ロ と く 厚 と く 思 と く 思 と

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Dilution Factor

V. Credé Hadron Spectroscopy at Jefferson Lab

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

P_z in $\gamma p \rightarrow p \pi^+ \pi^-$ 700 < E_{γ} < 800 MeV

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

P_z in $\gamma p \rightarrow p \pi^+ \pi^-$ 700 < E_{γ} < 800 MeV

V. Credé Hadron Spectroscopy at Jefferson Lab

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Helicity Difference in $\gamma p \rightarrow n \pi^+$

SP09: M. Dugger, et al., Phys. Rev. C 79, 065206 (2009); SM95: R. A. Arndt, I. I. Strakovsky, R. L. Workman, Phys. Rev. C 53, 430 (1996); MAID: D. Drechsel, S.S. Kamalov, L. Tiator Nucl. Phys. A645, 145 (1999)

V. Credé

S. Strauch (University of South Carolina)

Hadron Spectroscopy at Jefferson Lab

ヘロト 人間 とくほとう ほとう

The CLAS Spectrometer at JLab Photon Beam Asymmetries Double-Polarization Experiments (FROST)

Helicity Difference *E* in $\gamma p \rightarrow n \pi^+$

SP09: M. Dugger, et al., Phys. Rev. C 79, 065206 (2009); SM95: R. A. Arndt, I. I. Strakovsky, R. L. Workman, Phys. Rev. C 53, 430 (1996); MAID: D. Drechsel, S.S. Kamalov, L. Tiator Nucl. Phys. A645, 145 (1999)

V. Credé

S. Strauch (University of South Carolina)

・ロト ・ 同ト ・ ヨト ・ ヨト

The GlueX Experiment

Outline

• Quarks, QCD, and Confinement

- Complete Experiments for Baryons
- (Preliminary) Results from CLAS
 The CLAS Spectrometer at JLab
 Photon Beam Asymmetries

- Double-Polarization Experiments (FROST)
- Meson Spectroscopy in Photoproduction
 The GlueX Experiment
- Summary and Outlook

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ∢ ⊒ →

- Results on light mesons from CLAS at Jefferson Lab
 - → Search for the photo-excitation of exotic mesons in the π⁺π⁺π⁻ system (M. Nozar *et al.*, Phys. Rev. Lett. **102**, 102002 (2009))

- π with S = 0, L = 0 and m = 1
 → J^{PC} = 1⁺⁺, 1⁻⁻
- Spin flip required for exotic QNs

Results on light mesons from CLAS at Jefferson Lab

→ Search for the photo-excitation of exotic mesons in the π⁺π⁺π⁻ system (M. Nozar *et al.*, Phys. Rev. Lett. **102**, 102002 (2009))

Results on light mesons from CLAS at Jefferson Lab

→ Search for the photo-excitation of exotic mesons in the π⁺π⁺π⁻ system (M. Nozar *et al.*, Phys. Rev. Lett. **102**, 102002 (2009))

A $J^{PC} = 1^{-+}$ gluonic hybrid should be photo-produced at the same rate as the $a_2(1320)$, whereas in pion production it should be suppressed by a factor of 10. (Close & Page, Phys. Rev. D **52**, 1706 (1995))

・ロト ・ 理 ト ・ ヨ ト ・

- Upper limit for the $\pi_1(1600)$ of 13.5 nb, less than 2% of the $a_2(1320)$.
- New HyCLAS (g12) data have an order of magnitude more statistics. • e.g. $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$, $\gamma p \rightarrow p \pi^+ \pi^- \pi^0$ ($J^{PC} = 1^{-+}$ isoscalar production?)
- GlueX proposed to map out the light exotic spectrum.

- Results on light mesons from CLAS at Jefferson Lab
 - → Search for the photo-excitation of exotic mesons in the π⁺π⁺π⁻ system (M. Nozar *et al.*, Phys. Rev. Lett. **102**, 102002 (2009))

The GlueX Experiment

The GlueX Experiment

Delivery now - 2013

2014 beam & engineering runs

2015 first physics

2011

Outline

• Quarks, QCD, and Confinement

- Complete Experiments for Baryons
- (Preliminary) Results from CLAS
 The CLAS Spectrometer at JLab
 Photon Beam Asymmetries

- Double-Polarization Experiments (FROST)
- Meson Spectroscopy in Photoproduction
 The GlueX Experiment
 - 4 Summary and Outlook

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Summary and Outlook

The quest to understand confinement and the strong force is about to make great leaps forward:

- Progress in theory and computing will allow us to solve QCD and understand the baryon spectrum and the role of glue.
- New results from the current polarization programs worldwide will (soon) give us new insight on the observed and *missing* baryons.
 → New candidates for baryon resonances have been proposed.
- The definitive experiments to confirm or refute current expectations on the role of glue are being built, e.g. GlueX@Jefferson Lab.

Conclusions

Advances in both areas will allow us to finally understand QCD and confinement.

코 에 제 코 어