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Near-Ideal Fluids & Elliptic Flow



Steffen A. Bass

RHIC in the press: Perfect Liquid
• on April 18th, 2005, BNL 

announced in a press release 
that RHIC had created a new 
state of hot and dense 
matter which behaves like a 
nearly perfect liquid.

• how does one measure/
calculate the properties of a 
near ideal liquid?

• are there any other near 
ideal liquid systems found in 
nature?



Viscosity:
• shear and bulk viscosity are defined as the coefficients in the expansion of the stress 

tensor in terms of the velocity fields:

• viscous RFD requires solving an additional 9 eqns. for the dissipative flows 
Note:
• for quasi-particulate matter, viscosity decreases with increasing cross section
• for viscous RFD, the microscopic origin of viscosity is not relevant!
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Relativistic Fluid Dynamics (RFD)
• transport of macroscopic degrees of freedom
• based on conservation laws: ∂µTµν=0 ∂µjµ=0
• for ideal fluid: Tµν= (ε+p) uµ uν - p gµν   and  jiµ = ρi uµ

• Equation of State needed to close system of PDE’s: p=p(T,ρi)
connection to Lattice QCD calculation of EoS

• initial conditions (i.e. thermalized QGP) required for calculation
• assumes local thermal equilibrium, vanishing viscosity
applicability of hydro is a strong signature for a thermalized system



Collision Geometry: Elliptic Flow
• two nuclei collide rarely head-on, 

but mostly with an offset:

only matter in the overlap area 
gets compressed and heated up
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elliptic flow (v2):
• gradients of almond-shape surface will lead to 

preferential emission in the reaction plane
•  asymmetry out- vs. in-plane emission is quantified by 

2nd Fourier coefficient of angular distribution: v2

 vRFD: good agreement with data for very small η/s
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Elliptic flow: early creation

 P. Kolb, J. Sollfrank and U.Heinz, PRC 62 (2000) 054909

Most model calculations suggest that flow anisotropies are generated at the earliest 
stages of the expansion, on a timescale of ~ 5 fm/c if a QGP EoS is assumed.

initial energy density distribution:



shear-viscosity of QCD matter

M. Asakawa, S.A. Bass & B. Mueller: Phys. Rev. Lett. 96 (2006) 252301
M. Asakawa, S.A. Bass & B. Mueller: Prog. Theo. Phys. 116 (2006) 725 



AdS/CFT
vRFD

approximations not valid

initial state
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QGP and
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hadronization
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Viscosity at RHIC 

expanding hadron gas
w/ increasing m.f.p.:
large viscosity

large elliptic flow: 
near ideal fluid w/
small viscosity

parton 
recombination:

quasi-particle 
d.o.f.

•viscosity of QCD matter @ RHIC changes 
strongly with temperature & phase

•how can we quantify the viscosity of QCD 
matter?

L.P. Csernai, J.I. Kapusta & L. McLerran: Phys. Rev. Lett. 97: 152303 (2006)
M. Prakash, M. Prakash, R. Venugopalan & G. Welke: Phys. Rept. 227, 321 (1993) 
P. Arnold, G.D. Moore & L.D. Yaffe: JHEP 05: 051 (2003)



η/s from Lattice QCD

Harvey B. Meyer: Phys.Rev.D79: 011502, 2009
Harvey B. Meyer: arXiv:0809.5202 [hep-lat]

The confines of the Euklidian Formulation:
•extracting η/s formally requires taking the zero 
momentum limit in an infinite spatial volume, which is 
numerically not possible...

preliminary estimates:
caution: 
systematic errors are O(1)!

T
η/s

1.58 TC 2.32 TC

0.2 0.26

•calculating QCD transport coefficients on the Lattice 
has been identified as a Priority Research Direction 
by the DOE Office of Nuclear Physics and the Office 
of Advanced Scientific Computing Research (ASCR) in 
their report on Extreme-Scale Computing



‣YM observables at infinite NC and infinite coupling can be computed using 
classical gravity
‣technique can be applied to dynamical and thermodynamic observables

AdS/CFT correspondence
• calculating viscosity and viscosity/entropy ratio too difficult in full QCD
• quantities are calculable in a related theory using string theory methods

‣in all theories with gravity-duals one finds:           (very small number!)
 

η
s
=

4π

Caution:
• N=4 SUSY YM is not QCD!
• no information on how low η/s is microscopically generated 

J. Maldacena: Adv. Theor. Math. Phys. 2 (1998) 231 
E. Witten: Adv. Theor. Math. Phys. 2 (1998) 505
S.S. Gubser, I.R. Klebanov & M. Polyakov: Nucl.Phys. B636 (2002)  99

model for QCD: 
! N = 4 Super-Yang-Mills theory a string theory in 5d AdS 

finite temperature
large NC and strong coupling limit 

black hole in AdS5

classical gravity limit
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Elliptic Flow at the LHC

Implications for η/s:
• despite rise in temperature, η/s has to 
remain small, on the same level as 
observed at RHIC!

• can low value of η/s be reconciled with its 
known temperature dependence in the HTL 
calculations?
• T-dependence is logarithmic; lack of sensitivity 
for a 30% rise?

• physics beyond the HTL limit: color fields?

first data by the ALICE Collaboration:
• v2 vs. pT virtually identical to RHIC data
• rise in integrated v2 vs. centrality due to 
increase in radial flow

• charged particle multiplicity suggests a 
rise in temperature by 30% compared to 
RHIC (or a factor of approx. 2.9 in 
energy-density)

The ALICE Collaboration: arXiv:1011.3914 [nucl-ex]



The sQGP Challenge: do quasi-particles drive η/s?  

 does a small viscosity have to imply that 
matter is strongly interacting?

 consider effects of (turbulent) color fields?

 the success of near ideal hydrodynamics has 
led the community to equate low viscosity 
with a vanishing mean free path and thus 
large parton cross sections: strongly 
interacting QGP (sQGP) 

microscopic kinetic theory:
η is given by the rate of momentum 
transport:
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• microscopic transport with parton 
d.o.f. requires either unphysically 
large cross sections or a very specific 
implementation of the LPM effect to 
thermalize & create elliptic flow

Z. Xu & C. Greiner: talk @ QM2008

• can the QGP viscosity be anomalous?
 soft, turbulent color fields generate anomalous 

transport coefficients, which may give the 
medium the character of a nearly perfect fluid 
even at moderately weak coupling.

Anomalous Viscosity: 
 any contribution to the shear viscosity not 

explicitly resulting from momentum 
transport via a transport cross section

(see e.g. in Plasma-, Astro-, Biophysics)



Anomalous vs. Collisional Viscosity

collisional viscosity:
• derived in HTL weak coupling limit
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anomalous viscosity:
• induced by turbulent color fields, due to momentum-space anisotropy
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‣ for reasonable values of g: ηA < ηC 
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• sum-rule for system w/ 2 viscosities: 
(derived from variational principle)

‣ total viscosity dominated by ηA 
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Collisional vs. Anomalous Viscosity

 smaller viscosity dominates 
in system w/ 2 viscosities!

    temperature 
evolution:

 anomalous viscosity dominates total shear viscosity during early QGP evolution
 a small viscosity does not necessarily imply strongly interacting matter!

initial state

pre-equilibrium

QGP and
hydrodynamic expansion

hadronization

hadronic phase
and freeze-out



η/s of a Hadron Gas

N. Demir & S.A. Bass: Phys. Rev. Lett. 102, 172302 (2009)



Shear Viscosity: Linear Transport Equation
& Green - Kubo Formalism

•using linear-response theory, the Green-Kubo relations for the shear viscosity 
can be derived, expressing η as an integral of an near-equilibrium time 
correlation function of the stress-energy tensor: 
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Mechanical definition of shear viscosity:
•application of a shear force to a system gives rise to a non-zero value of the xy-
component of the pressure tensor Pxy. Pxy is then related to the velocity flow field 
via the shear viscosity coefficient η:   

Pxy = ��
⇥vx

⇥y
•a similar linear transport equation can be defined for other transport coefficients: 
thermal conductivity, diffusion ...
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• evaluating the correlator numerically, e.g. in 
UrQMD, one empirically finds an exponential 
decay as function of time

• using the following ansatz, one can extract the 
relaxation time τπ:

• the shear viscosity then can be calculated 
from known/extracted quantities:

A. Muronga: Phys. Rev. C69: 044901, 2004
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• for particles in a fixed volume, the stress 
energy tensor discretizes

� =
V

T

� �

0
dt �⇥xy(0)⇥xy(t)⇥

• and the Green-Kubo formula reads:

Microscopic Transport: η/s of a Hadron Gas

sGibbs =
�
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T
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Entropy:
• extract thermodynamic quantities via:

• use Gibbs relation (with chem. pot. extratced via SM)
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η/s of a Hadron Gas in & out of Equilibrium

• non-unit fugacities reduce η/s by a 
factor of two to η/s≈0.5
‣ improved constraint: η/s needs to be 
significantly lower in deconfined phase 
for vRFD to reproduce elliptic flow!

T. Hirano & K. Tsuda: Nucl. Phys. A715, 821 (2003)
P.F. Kolb & R. Rapp: Phys. Rev. C67, 044903 (2003)

viscous RFD

N. Demir & S.A. Bass: arXiv:0812.2422 

first reliable calculation of of η/s for a full hadron gas including baryons 
and anti-baryons:
‣breakdown of vRFD in the hadronic phase?
‣what are the consequences for η/s in the deconfined phase?

• RFD freeze-out temperature to 
reproduce spectral shapes: ∼110 MeV

• Statistical Model temperature fits to 
hadron yields/ratios: ∼160 MeV
‣ separation of chemical and kinetic 
freeze-out in the hadronic phase!
‣ confirmed by hybrid models
‣ implies non-unit species-dependent 
fugacities in RFD



Improved Constraints on η/s

Song, Bass, Heinz, Hirano & Shen: Phys. Rev. Lett. 106 (2011) 192301



     viscous RFD
QGP evolution Cooper-Frye 

formula   

UrQMD

t fm/c

hadronic 
rescattering

Monte Carlo

Hadronization

TC TSW

Viscous Hydro + Micro Model

 micro. transport (UrQMD)
• no equilibrium assumptions

 model break-up stage
 calculate freeze-out
 includes viscosity in hadronic phase

• parameters:
– (total/partial) cross sections

matching condition: 
• use same set of hadronic states for EoS as in UrQMD
• generate hadrons in each cell using local T and μB
• take off-equilibrium distribution functions into account

S.A. Bass & A. Dumitru, Phys. Rev C61 (2000) 064909
D. Teaney et al, nucl-th/0110037
T. Hirano et al. Phys. Lett. B636 (2006) 299
C. Nonaka & S.A. Bass, Phys. Rev. C75 (2006) 014902
H. Song, S.A. Bass, U.W. Heinz, T. Hirano & C. Shen, arXiv:
1011.2783 [nucl-th]

viscous RFD
• ideally suited for dense systems
– model early QGP reaction stage

• well defined Equation of State
• parameters:
– initial conditions
– Equation of State including PCE for HG 
– viscosity over entropy-density ratio

+



Improved Extraction of η/s 
Viscous RFD Improvements: 
• use fluctuating initial conditions
• state-of-the-art Lattice EoS, including 

PCE in hadronic phase prior to Tsw

• constrain τ0 and s with fit to data for 
dN/dy and spectra

Milestones:
• eccentricity scaling yields same centrality 

dependence for MC-KLN & MC-Glauber
• centrality dependence agrees with data
• realistic treatment of hadronic phase, 

including viscosity and freeze-out

• slope of v2/ε cannot distinguish between KLN and Glauber initial conditions
• QGP viscosity: 1/(4π) < η/s < 2/(4π) [Glauber] & 2/(4π) < η/s < 3/(4π) [KLN]



Conclusion & Outlook

Transition from Discovery Phase to Exploratory Phase and 
onwards to Precision Spectroscopy of the QGP:
• improved constraints via hybrid viscous RFD + UrQMD calculation, 

that fully accounts for large viscosity of hadronic phase
• largest uncertainty currently due to lack of knowledge on the 

structure of the initial conditions
• need to establish the physics driving the small value of η/s (e.g. 

particles vs. fields) in the QGP phase

Heavy-Ion collisions at RHIC have produced a state of matter 
which can be called the Quark-Gluon-Plasma:
• the properties of the QGP can be characterized by its transport 

coefficients, such as η/s and q-hat
• near ideal fluidity: the smallest value of η/s observed in nature
• η/s may strongly depend on temperature and phase of QCD matter



Thank you!
Any questions?



The End



Hard Thermal Loops: Instabilities

P. Romatschke & M. Strickland, PRD 68: 036004 (2003)
P. Arnold, J. Lenaghan & G.D. Moore, JHEP 0308, 002 (2003)
S. Mrowczynski, PLB 314, 118 (1993)

Nonabelian Vlasov equations describe interaction of “hard” (i.e. particle) and “soft” 
color field modes and generate the “hard-thermal loop” effective theory: 

Effective HTL theory permits systematic study of instabilities of “soft” color fields
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find HTL modes for anisotropic distribution:

 for most f1≠0 there exist unstable modes
 energy-density and growth rate of unstable 

modes can be calculated: 
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Anomalous Viscosity Derivation: Sketch

• turbulent color field assumption:
• ensemble average over fields:

 diffusive Vlasov-Boltzmann Eqn:

⇤Ba
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• example: anomalous viscosity in case of transverse magnetic fields
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• linear Response: connect η with momentum anisotropy Δ:
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and

Fa = Ea + v � Ba

• use color Vlasov-Boltzmann Eqn. to solve for f and Δ:
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with


