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Near-Ideal Fluids & Elliptic Flow



Steffen A. Bass

RHIC in the press: Perfect Liquid
• on April 18th, 2005, BNL 

announced in a press release 
that RHIC had created a new 
state of hot and dense 
matter which behaves like a 
nearly perfect liquid.

• how does one measure/
calculate the properties of a 
near ideal liquid?

• are there any other near 
ideal liquid systems found in 
nature?



Viscosity:
• shear and bulk viscosity are defined as the coefficients in the expansion of the stress 

tensor in terms of the velocity fields:

• viscous RFD requires solving an additional 9 eqns. for the dissipative flows 
Note:
• for quasi-particulate matter, viscosity decreases with increasing cross section
• for viscous RFD, the microscopic origin of viscosity is not relevant!
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Relativistic Fluid Dynamics (RFD)
• transport of macroscopic degrees of freedom
• based on conservation laws: ∂µTµν=0 ∂µjµ=0
• for ideal fluid: Tµν= (ε+p) uµ uν - p gµν   and  jiµ = ρi uµ

• Equation of State needed to close system of PDE’s: p=p(T,ρi)
connection to Lattice QCD calculation of EoS

• initial conditions (i.e. thermalized QGP) required for calculation
• assumes local thermal equilibrium, vanishing viscosity
applicability of hydro is a strong signature for a thermalized system



Collision Geometry: Elliptic Flow
• two nuclei collide rarely head-on, 

but mostly with an offset:

only matter in the overlap area 
gets compressed and heated up
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elliptic flow (v2):
• gradients of almond-shape surface will lead to 

preferential emission in the reaction plane
•  asymmetry out- vs. in-plane emission is quantified by 

2nd Fourier coefficient of angular distribution: v2

 vRFD: good agreement with data for very small η/s
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Elliptic flow: early creation

 P. Kolb, J. Sollfrank and U.Heinz, PRC 62 (2000) 054909

Most model calculations suggest that flow anisotropies are generated at the earliest 
stages of the expansion, on a timescale of ~ 5 fm/c if a QGP EoS is assumed.

initial energy density distribution:



shear-viscosity of QCD matter

M. Asakawa, S.A. Bass & B. Mueller: Phys. Rev. Lett. 96 (2006) 252301
M. Asakawa, S.A. Bass & B. Mueller: Prog. Theo. Phys. 116 (2006) 725 



AdS/CFT
vRFD

approximations not valid

initial state
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QGP and
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hadronization
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Viscosity at RHIC 

expanding hadron gas
w/ increasing m.f.p.:
large viscosity

large elliptic flow: 
near ideal fluid w/
small viscosity

parton 
recombination:

quasi-particle 
d.o.f.

•viscosity of QCD matter @ RHIC changes 
strongly with temperature & phase

•how can we quantify the viscosity of QCD 
matter?

L.P. Csernai, J.I. Kapusta & L. McLerran: Phys. Rev. Lett. 97: 152303 (2006)
M. Prakash, M. Prakash, R. Venugopalan & G. Welke: Phys. Rept. 227, 321 (1993) 
P. Arnold, G.D. Moore & L.D. Yaffe: JHEP 05: 051 (2003)



η/s from Lattice QCD

Harvey B. Meyer: Phys.Rev.D79: 011502, 2009
Harvey B. Meyer: arXiv:0809.5202 [hep-lat]

The confines of the Euklidian Formulation:
•extracting η/s formally requires taking the zero 
momentum limit in an infinite spatial volume, which is 
numerically not possible...

preliminary estimates:
caution: 
systematic errors are O(1)!

T
η/s

1.58 TC 2.32 TC

0.2 0.26

•calculating QCD transport coefficients on the Lattice 
has been identified as a Priority Research Direction 
by the DOE Office of Nuclear Physics and the Office 
of Advanced Scientific Computing Research (ASCR) in 
their report on Extreme-Scale Computing



‣YM observables at infinite NC and infinite coupling can be computed using 
classical gravity
‣technique can be applied to dynamical and thermodynamic observables

AdS/CFT correspondence
• calculating viscosity and viscosity/entropy ratio too difficult in full QCD
• quantities are calculable in a related theory using string theory methods

‣in all theories with gravity-duals one finds:           (very small number!)
 

η
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Caution:
• N=4 SUSY YM is not QCD!
• no information on how low η/s is microscopically generated 

J. Maldacena: Adv. Theor. Math. Phys. 2 (1998) 231 
E. Witten: Adv. Theor. Math. Phys. 2 (1998) 505
S.S. Gubser, I.R. Klebanov & M. Polyakov: Nucl.Phys. B636 (2002)  99

model for QCD: 
! N = 4 Super-Yang-Mills theory a string theory in 5d AdS 

finite temperature
large NC and strong coupling limit 

black hole in AdS5

classical gravity limit
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Elliptic Flow at the LHC

Implications for η/s:
• despite rise in temperature, η/s has to 
remain small, on the same level as 
observed at RHIC!

• can low value of η/s be reconciled with its 
known temperature dependence in the HTL 
calculations?
• T-dependence is logarithmic; lack of sensitivity 
for a 30% rise?

• physics beyond the HTL limit: color fields?

first data by the ALICE Collaboration:
• v2 vs. pT virtually identical to RHIC data
• rise in integrated v2 vs. centrality due to 
increase in radial flow

• charged particle multiplicity suggests a 
rise in temperature by 30% compared to 
RHIC (or a factor of approx. 2.9 in 
energy-density)

The ALICE Collaboration: arXiv:1011.3914 [nucl-ex]



The sQGP Challenge: do quasi-particles drive η/s?  

 does a small viscosity have to imply that 
matter is strongly interacting?

 consider effects of (turbulent) color fields?

 the success of near ideal hydrodynamics has 
led the community to equate low viscosity 
with a vanishing mean free path and thus 
large parton cross sections: strongly 
interacting QGP (sQGP) 

microscopic kinetic theory:
η is given by the rate of momentum 
transport:
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• microscopic transport with parton 
d.o.f. requires either unphysically 
large cross sections or a very specific 
implementation of the LPM effect to 
thermalize & create elliptic flow

Z. Xu & C. Greiner: talk @ QM2008

• can the QGP viscosity be anomalous?
 soft, turbulent color fields generate anomalous 

transport coefficients, which may give the 
medium the character of a nearly perfect fluid 
even at moderately weak coupling.

Anomalous Viscosity: 
 any contribution to the shear viscosity not 

explicitly resulting from momentum 
transport via a transport cross section

(see e.g. in Plasma-, Astro-, Biophysics)



Anomalous vs. Collisional Viscosity

collisional viscosity:
• derived in HTL weak coupling limit
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anomalous viscosity:
• induced by turbulent color fields, due to momentum-space anisotropy
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‣ for reasonable values of g: ηA < ηC 
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• sum-rule for system w/ 2 viscosities: 
(derived from variational principle)

‣ total viscosity dominated by ηA 
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Collisional vs. Anomalous Viscosity

 smaller viscosity dominates 
in system w/ 2 viscosities!

    temperature 
evolution:

 anomalous viscosity dominates total shear viscosity during early QGP evolution
 a small viscosity does not necessarily imply strongly interacting matter!

initial state

pre-equilibrium

QGP and
hydrodynamic expansion

hadronization

hadronic phase
and freeze-out



η/s of a Hadron Gas

N. Demir & S.A. Bass: Phys. Rev. Lett. 102, 172302 (2009)



Shear Viscosity: Linear Transport Equation
& Green - Kubo Formalism

•using linear-response theory, the Green-Kubo relations for the shear viscosity 
can be derived, expressing η as an integral of an near-equilibrium time 
correlation function of the stress-energy tensor: 
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Mechanical definition of shear viscosity:
•application of a shear force to a system gives rise to a non-zero value of the xy-
component of the pressure tensor Pxy. Pxy is then related to the velocity flow field 
via the shear viscosity coefficient η:   

Pxy = ��
⇥vx

⇥y
•a similar linear transport equation can be defined for other transport coefficients: 
thermal conductivity, diffusion ...
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• evaluating the correlator numerically, e.g. in 
UrQMD, one empirically finds an exponential 
decay as function of time

• using the following ansatz, one can extract the 
relaxation time τπ:

• the shear viscosity then can be calculated 
from known/extracted quantities:

A. Muronga: Phys. Rev. C69: 044901, 2004
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• for particles in a fixed volume, the stress 
energy tensor discretizes
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• and the Green-Kubo formula reads:

Microscopic Transport: η/s of a Hadron Gas

sGibbs =
�
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Entropy:
• extract thermodynamic quantities via:

• use Gibbs relation (with chem. pot. extratced via SM)
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η/s of a Hadron Gas in & out of Equilibrium

• non-unit fugacities reduce η/s by a 
factor of two to η/s≈0.5
‣ improved constraint: η/s needs to be 
significantly lower in deconfined phase 
for vRFD to reproduce elliptic flow!

T. Hirano & K. Tsuda: Nucl. Phys. A715, 821 (2003)
P.F. Kolb & R. Rapp: Phys. Rev. C67, 044903 (2003)

viscous RFD

N. Demir & S.A. Bass: arXiv:0812.2422 

first reliable calculation of of η/s for a full hadron gas including baryons 
and anti-baryons:
‣breakdown of vRFD in the hadronic phase?
‣what are the consequences for η/s in the deconfined phase?

• RFD freeze-out temperature to 
reproduce spectral shapes: ∼110 MeV

• Statistical Model temperature fits to 
hadron yields/ratios: ∼160 MeV
‣ separation of chemical and kinetic 
freeze-out in the hadronic phase!
‣ confirmed by hybrid models
‣ implies non-unit species-dependent 
fugacities in RFD



Improved Constraints on η/s

Song, Bass, Heinz, Hirano & Shen: Phys. Rev. Lett. 106 (2011) 192301



     viscous RFD
QGP evolution Cooper-Frye 

formula   

UrQMD

t fm/c

hadronic 
rescattering

Monte Carlo

Hadronization

TC TSW

Viscous Hydro + Micro Model

 micro. transport (UrQMD)
• no equilibrium assumptions

 model break-up stage
 calculate freeze-out
 includes viscosity in hadronic phase

• parameters:
– (total/partial) cross sections

matching condition: 
• use same set of hadronic states for EoS as in UrQMD
• generate hadrons in each cell using local T and μB
• take off-equilibrium distribution functions into account

S.A. Bass & A. Dumitru, Phys. Rev C61 (2000) 064909
D. Teaney et al, nucl-th/0110037
T. Hirano et al. Phys. Lett. B636 (2006) 299
C. Nonaka & S.A. Bass, Phys. Rev. C75 (2006) 014902
H. Song, S.A. Bass, U.W. Heinz, T. Hirano & C. Shen, arXiv:
1011.2783 [nucl-th]

viscous RFD
• ideally suited for dense systems
– model early QGP reaction stage

• well defined Equation of State
• parameters:
– initial conditions
– Equation of State including PCE for HG 
– viscosity over entropy-density ratio

+



Improved Extraction of η/s 
Viscous RFD Improvements: 
• use fluctuating initial conditions
• state-of-the-art Lattice EoS, including 

PCE in hadronic phase prior to Tsw

• constrain τ0 and s with fit to data for 
dN/dy and spectra

Milestones:
• eccentricity scaling yields same centrality 

dependence for MC-KLN & MC-Glauber
• centrality dependence agrees with data
• realistic treatment of hadronic phase, 

including viscosity and freeze-out

• slope of v2/ε cannot distinguish between KLN and Glauber initial conditions
• QGP viscosity: 1/(4π) < η/s < 2/(4π) [Glauber] & 2/(4π) < η/s < 3/(4π) [KLN]



Conclusion & Outlook

Transition from Discovery Phase to Exploratory Phase and 
onwards to Precision Spectroscopy of the QGP:
• improved constraints via hybrid viscous RFD + UrQMD calculation, 

that fully accounts for large viscosity of hadronic phase
• largest uncertainty currently due to lack of knowledge on the 

structure of the initial conditions
• need to establish the physics driving the small value of η/s (e.g. 

particles vs. fields) in the QGP phase

Heavy-Ion collisions at RHIC have produced a state of matter 
which can be called the Quark-Gluon-Plasma:
• the properties of the QGP can be characterized by its transport 

coefficients, such as η/s and q-hat
• near ideal fluidity: the smallest value of η/s observed in nature
• η/s may strongly depend on temperature and phase of QCD matter



Thank you!
Any questions?



The End



Hard Thermal Loops: Instabilities

P. Romatschke & M. Strickland, PRD 68: 036004 (2003)
P. Arnold, J. Lenaghan & G.D. Moore, JHEP 0308, 002 (2003)
S. Mrowczynski, PLB 314, 118 (1993)

Nonabelian Vlasov equations describe interaction of “hard” (i.e. particle) and “soft” 
color field modes and generate the “hard-thermal loop” effective theory: 

Effective HTL theory permits systematic study of instabilities of “soft” color fields
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find HTL modes for anisotropic distribution:

 for most f1≠0 there exist unstable modes
 energy-density and growth rate of unstable 

modes can be calculated: 
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Anomalous Viscosity Derivation: Sketch

• turbulent color field assumption:
• ensemble average over fields:

 diffusive Vlasov-Boltzmann Eqn:

⇤Ba
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• example: anomalous viscosity in case of transverse magnetic fields
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• linear Response: connect η with momentum anisotropy Δ:
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and

Fa = Ea + v � Ba

• use color Vlasov-Boltzmann Eqn. to solve for f and Δ:
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with


