Results from ALICE

Christine Nattrass for the ALICE collaboration University of Tennessee at Knoxville

Exploring QCD at high temperatures

~1000 members
~30 countries
~100 institutes

ALL

ALICE

p+p collisions

Pb+Pb collisions

Centrality dependence of dN_{ch}/dη

Centrality dependence of $dN_{ch}/d\eta$

Transverse Energy

$\sqrt{s_{NN}}$ dependence

- $dN_{ch}/d\eta/(0.5*N_{part}) \sim 8$
- **2.1 x RHIC** 1.9 x pp (NSD) at 2.36 TeV
- growth with \sqrt{s} faster in AA than pp

- $dE_T/d\eta/(0.5*N_{part}) \sim 9 \text{ in } 0-5\%$
- ~5% increase of N_{part} (353 \rightarrow 383) \rightarrow 2.7 x RHIC (consistent with 20% increase of $\langle p_x \rangle$)

Grows faster than simple logarithmic scaling extrapolated from lower energy

Christine Nattrass (UTK), Southeastern Section of the APS, October 21, 2011

Probes of the Quark Gluon Plasma

Want a probe which traveled through the collision

Probes of the Quark Gluon Plasma

Want a probe which traveled through the collision QGP is short lived \rightarrow need a probe created in the collision

Probes of the Quark Gluon Plasma

Want a probe which traveled through the collision QGP is short lived \rightarrow need a probe created in the collision We expect the medium to be dense \rightarrow absorb probe

Single particles

Measure spectra of hadrons and compare to those in p+p collisions or peripheral A+A collisions

If high- p_{T} hadrons are suppressed, this is evidence of jet quenching

Assumption: sufficiently high- p_T hadrons mostly come from jets Unmodified spectra:

Christine Nattrass (UTK), Southeastern Section of the APS, October 21, 2011

Nuclear modification factor (R_{Λ}

Nuclear modification factor (R_{Λ})

Baryon anomaly: Λ/K^0_{c}

Baryon anomaly: Λ/K^0_{c}

Charm nuclear modification factor

Conclusions

- Charged particle production and transverse energy follow same trends as seen at RHIC
- Energy higher than experimental extrapolation, lower than many models
- High p_T particle production suppressed to ~0.15 of what we would expect from scaling p+p collisions \rightarrow hot, dense medium produced
- Significant suppression observed even for heavy quarks

Backup slides

Non-photonic electrons

Charm cross section

