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temperature and density QCD matter experimentally in a controlled 
environment, i.e., to explore the QCD matter phase space.
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Physics Motivations

• It is probably the only venue to study the properties of extreme high 
temperature and density QCD matter experimentally in a controlled 
environment, i.e., to explore the QCD matter phase space.

• It also provides a laboratory-based test of the standard model of 
cosmology – “big bang”.
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Phase Diagram (H2O) – We Have Done This! 
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A fundamental understanding 
requires the knowledge of
i)The location of the Critical 
End Point (CEP)
ii)The location of phase 
coexistence lines 
iii)The properties of each 
phase 

Phase Diagram (H2O) – We Have Done This! 

This knowledge is fundamental for studying the phase 
space properties of any substance !
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Explore QCD Phase Space
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• The colliding nuclei at RHIC energies would melt from protons and neutrons 
into a collection of quarks and gluons

Tc ~ 170 MeV; ε ~ 1.5 GeV/fm3

Quark Gluon Plasma

Hadron 
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• The colliding nuclei at RHIC energies would melt from protons and neutrons 
into a collection of quarks and gluons

Tc ~ 170 MeV; ε ~ 1.5 GeV/fm3

Quark Gluon Plasma

Hadron 

Measure the initial temperature of matter formed at RHIC
Is Tinit higher than Tc ~ 170 MeV?

LHC experiments
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What We Set Out to Measure? (>25 yrs)
Theorists predicted a number of signals that might abruptly manifest themselves 
as soon as we crossed the critical temp. &  density for the phase transition

Change in  pion
charged/neutral

More particles containing
the heavy charm quark 

Disappearance of J/ψChange in mass,
width of φ meson 
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Increase in # of photons
@ low momentum
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How Did We Do on the Predictions?
Theorists predicted a number of signals that might abruptly manifest themselves 
as soon as we crossed the critical temp. &  density for the phase transition

Change in pion
charged/neutral

More particles containing
the heavy charm quark 

Disappearance of J/ψChange in mass,
width of φ meson 

10/21/2011 X.HE, SESAPS2011

Increase in # of photons
@ low momentum
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PHENIX Experiment

Au-Au   &   p-p spin

designed to measure rare probes: 	
 + high rate capability & granularity
	
 	
 	
 	
 + good mass resolution and particle ID
	
 	
 	
 	
 -  limited acceptance	
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PHENIX Experiment

• 2 central arms
	
 electrons, photons, hadrons

– charmonium  J/ψ, ψ’ -> e+e-

– vector meson  r, w, φ -> e+e- 
– high pT           πo, π+, π-

– direct photons
– open charm 
– hadron physics

• 2 muon arms 

Au-Au   &   p-p spin

designed to measure rare probes: 	
 + high rate capability & granularity
	
 	
 	
 	
 + good mass resolution and particle ID
	
 	
 	
 	
 -  limited acceptance	
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The PHENIX Detector Acceptance
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Central Arm: Muon Arm: 

€ 

η < 0.35,  Δφ = 2 × π
2

€ 

1.2 < η < 2.4,  Δφ = 2π



Run Summary
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Run-11: Au+Au, p+p,  Run-12 starts in January next year.



t

Emerging Picture

x
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Gold
nucleus

Gold
 nucleus

v~0.99c

z:collision axis

t

0

t =
 z/

c

t = -z/c

“Thermalized” partonic Fluid!
(s)QGP?

 εBjorken ~ 5 - 15 GeV/fm3

           ~ 35 – 100 ε0

A “little Bang” occurs 
in RHIC collisions 

Multiplicity
measurements

Emerging Picture

Flow 
measurements

Particle ratio
measurements

x
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Jet 
measurements

Temperature 
measurements



The matter is so opaque that even a 20 GeV π0 is stopped.
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The matter is so opaque that even a 20 GeV π0 is stopped.

• Suppression is very strong (RAA=0.2!) and flat up to 20 GeV/c
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PRL 101, 232301 (2008)

PHENIX: PRC 82, 011902 (2010) 



The matter is so dense that even heavy quarks are stopped
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The matter is so dense that even heavy quarks are stopped
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PHENIX: PRL 98, 172301 (2007) 
• Even heavy quark 

(charm) suffers 
substantial energy loss 
in the matter

• The data provide a 
strong constraint on 
the energy loss models.

• The data suggest large 
c-quark-medium cross 
section; evidence for 
strongly coupled QGP.



The matter is so strongly coupled that even heavy quarks flow

10/21/2011 14X.HE, SESAPS2011

PHENIX: PRL 98, 172301 (2007) 



The matter is so strongly coupled that even heavy quarks flow
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PHENIX: PRL 98, 172301 (2007) 

• Charm flows, but not as 
strong as light mesons.

• Drop of the flow 
strength at high pT. Is 
this due to b-quark 
contribution?

• The data favors the 
model that charm 
quark itself flows at low 
pT.



Initial temperature

From data:        Tini >  TAuAu ~ 220 MeV 
From models:   Tini = 300 to 600 MeV for t0 = 0.15 to 0.6 fm/c 
Lattice QCD predicts a phase transition to quark gluon plasma at Tc ~ 170 MeV

TC from Lattice QCD ~ 170 MeV

TAuAu(fit) ~ 220 MeV

PHENIX, PRC 81, 034911 (2010)
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The matter is so hot that it emits thermal photon copiously



TEMPERATURE MEASUREMENT
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Temperature is an Important Physical Variable in the 
Standard Model of Cosmology
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Temperature is an Important Physical Variable in the 
Standard Model of Cosmology

17
€ 

In the early Universe, i.e.,  at very high T :
The approximate energy density is given as

ρ = gB
B
∑ +

7
8

gF
F
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
π 2

30
T 4 ≡

π 2

30
N(T)T 4

And the age of the Universe

t =
90

32π 3GNN(T)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

T −2

or

tTMeV
2 = 2.4 N(T)[ ]−1/ 2

where t in seconds, TMeV  in MeV.

http://pdg.lbl.gov
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Temperature is an Important Physical Variable in the 
Standard Model of Cosmology

17

For N = 52,  T = 250 MeV, one has
t = 5.3 x 10-6 s,  T = 2.9 x 1012 K,  
ρ = 8.9 GeV/fm3.  
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Remote Temperature Sensing

Red Hot White Hot
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• Hot objects produce thermal 
spectrum of EM radiation.

Remote Temperature Sensing

Red Hot White Hot
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• Hot objects produce thermal 
spectrum of EM radiation.

• Red clothes are NOT red hot, 
reflected light is not thermal.

Remote Temperature Sensing

Red Hot

Not Red Hot!

White Hot
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Thermal photon from hot matter

Hot matter emits thermal radiation
Temperature can be measured from the 
emission spectrum
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time

hard parton scattering

AuAu

Hadron Gas

freeze-out

quark-gluon plasma

Space

Time

expansion

γγ
 φ p K ππ

Photon Probe of Nuclear Collisions
ππ K
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time

hard parton scattering

AuAu

Hadron Gas

freeze-out

quark-gluon plasma

Space

Time

expansion

γγ
 φ p K ππ

Photon Probe of Nuclear Collisions
ππ K

Photons can probe the early 
stage of the reaction deep 
inside of the dense matter
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Many sources of photons

quark gluon

γ

pQCD direct photons from 
initial hard scattering of 
quarks and gluons
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Many sources of photons

quark gluon

γ

pQCD direct photons from 
initial hard scattering of 
quarks and gluons

γ

π

ρ

π Thermal photons from     
hadron gas after hadronization

π
γ

γ
Decay Photons from hadrons 
(π0, η, etc)

Thermal photons from 
hot quark gluon plasma
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Many sources of photons

quark gluon

γ

pQCD direct photons from 
initial hard scattering of 
quarks and gluons

γ

π

ρ

π Thermal photons from     
hadron gas after hadronization

π
γ

γ
Decay Photons from hadrons 
(π0, η, etc)

background

Thermal photons from 
hot quark gluon plasma
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Virtual Photons Come to Rescue

22

e-

e+
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Virtual Photons Come to Rescue

• Source of real photon should also be able to emit virtual photon
• At m0, the yield of virtual photons is the same as real photon
 Real photon yield can be measured from virtual photon yield, which is 

observed as low mass e+e- pairs
• Advantage: hadron decay background can be substantially reduced. For 

m>mπ, π0 decay photons (~80% of background) are removed

22
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Virtual Photons Come to Rescue

• Source of real photon should also be able to emit virtual photon
• At m0, the yield of virtual photons is the same as real photon
 Real photon yield can be measured from virtual photon yield, which is 

observed as low mass e+e- pairs
• Advantage: hadron decay background can be substantially reduced. For 

m>mπ, π0 decay photons (~80% of background) are removed

 S/B is improved by a factor of five
• Other advantages: photon ID, energy resolution, etc
• Cost: the yield is reduced by a large factor (~ α/3π ∼ 1/1000) 

22

e-

e+
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Direct Photon Spectra

• Direct photon measurements

– real (pT>4GeV)

– virtual (1<pT<5GeV)
• pQCD consistent with p+p 

down to pT=1GeV/c

• Au+Au data are above Ncoll 
scaled p+p for pT < 2.5 GeV/c

• Au+Au = scaled p+p + exp: 
TAuAu = 221 ± 19stat ± 19syst MeV

• Theoretical prediction of 
thermal photon by Turbide et al. 
agrees with the data within 
about a factor of two. 

exp	
  +	
  TAA	
  scaled	
  pp

NLO	
  pQCD	
  (W.	
  Vogelsang)

Fit	
  to	
  pp
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A. Adare et al., PRL 104, 132301 (2010)



HEAVY QUARKONIA
Quarkonia melt in a hot QGP - Matsui & Satz 1986, Karsch et al. 1988

10/21/2011 X.HE, SESAPS2011 24

“ … If high energy heavy ion collisions lead to 
the formation of a hot quark-gluon plasma, 
then color screening prevents c-cbar binding 
in the deconfined interior of the interaction 
region … It is concluded that J/Ψ suppression 
in nuclear collisions should provide an 
unambiguous signature of quark-gluon plasma 
formation.” 

A 25-year old story (hypothesis)



Melting - Quarkonia in A+A 

hep-ph/0609197v1 H. Satz 

- Binding of a q-qbar pair 
is subject to color 
screening in QGP.

- Temperature of QGP 
can be probed by 
measurement heavy 
quarkonia.

- Each quarkonium has 
different binding radius. 

hep-ph/0609197v1 H. Satz 

state J/ψ χc Ψ’ Υ1S Υ2S Υ3S

mass	
  [GeV] 3.10 3.53 3.6
8

9.46 10.02 10.36

radius	
  [fm] 0.25 0.36 0.4
5

0.14 0.28 0.39

arXiv:0911.4806
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Quarkonia Suppression Similarity in √s
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Quarkonia Suppression Similarity in √s
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Quarkonia Suppression Similarity in √s

Overall suppression of J/ψ is very 
similar between RHIC, SPS, & LHC
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Quarkonia Suppression Similarity in √s

Overall suppression of J/ψ is very 
similar between RHIC, SPS, & LHC
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62 GeV 39 GeV

CMS - pT > 6.5

SPS

PHENIX forward

PHENIX y=0

PHENIX arXiv:1103.6269



Quarkonia Suppression Levels Differ in Details

27

PHENIX arXiv:1103.6269

forward/mid

forward

mid-rapidity
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Quarkonia Suppression Levels Differ in Details

27

PHENIX arXiv:1103.6269

forward/mid
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Forward-rapidity is suppressed more than Mid-rapidity

Quarkonia Suppression Levels Differ in Details

27

PHENIX arXiv:1103.6269

forward/mid

forward

mid-rapidity
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Better Knowledge about the Baseline
 ψ’→ e+e-

€ 

FΨ'
J /Ψ =

BJ /Ψ
Ψ' σΨ'
σJ /Ψ

= (9.6 ± 2.4)%



10/21/2011 28X.HE, SESAPS2011

Better Knowledge about the Baseline
χc →J/ψ + γ  ψ’→ e+e-

€ 

FΨ'
J /Ψ =

BJ /Ψ
Ψ' σΨ'
σJ /Ψ

= (9.6 ± 2.4)%

€ 

Fχc
J /Ψ =

Nχ c

NJ /Ψ

1
< εχc /ε J /Ψ >

= (32 ± 9)%
Consistent with world average!!!



Quarkonia Suppression with Feed-down

29

PHENIX arXiv:1103.6269

ψ’ & χc gone? (42±9%)

forward/mid

forward

mid-rapidity
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If Ψ’ and χc are melted already, they account for ~40% maximum.
The suppression is much stronger in more central collisions!

Quarkonia Suppression with Feed-down

29

PHENIX arXiv:1103.6269

ψ’ & χc gone? (42±9%)

forward/mid

forward

mid-rapidity
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CNM effects appear to provide a large fraction of the observed suppression; so 
difficult to conclude much w/o a thorough understanding of CNM and its 
extrapolation to A+A from d+A

PHENIX Is Rigorously Disentangling CNM Effects !!!
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CNM effects appear to provide a large fraction of the observed suppression; so 
difficult to conclude much w/o a thorough understanding of CNM and its 
extrapolation to A+A from d+A

PHENIX Is Rigorously Disentangling CNM Effects !!!

• It looks like that we have to understand CNM in a fundamental way in 
order to obtain reliable/quantitative extrapolations to A+A.

10/21/2011 30X.HE, SESAPS2011

Au

R d
A

u

PHENIX arXiv:1010.1246, accepted in PRL



STAR

Heavier Quarkonia - Upsilons
Upsilons suppressed in CNM at RHIC

• Upsilon suppression in Au+Au at RHIC – watch out for CNM 
suppression. 

• PHENIX has not completed the Upsilon suppression analysis 
for Au+Au yet.  Hopefully it will come out soon.

10/21/2011 31X.HE, SESAPS2011



FUTURE WORK

3210/21/2011 X.HE, SESAPS2011

The heavy flavor program for the next five years 
will be dominated by the new capabilities brought 
by the VTX and FVTX silicon detectors.

Beyond five years, the opportunity exists with 
sPHENIX to build a data set that will allow us to 
quantitatively use heavy flavors to characterize 
the thermodynamics of QGP. 



PHENIX VTX Detector

10/21/2011 X.HE, SESAPS2011
33

VTX – 2 pixel, 2 stripixel layers – added in Run 11, operating in Au+Au 
coverage |η| < 1 Added capabilities to central arms:
•Separating D and B decays 
•Improving mass resolution for quarkonia

Data analysis is ongoing!  Expecting much improved results!



FVTX – To Be Installed in Run-12

10/21/2011 X.HE, SESAPS2011
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• Mean π,K -> m, e decay distance is large
• D, B mesons travel some distance before semileptonic decay to muons or 

electrons
• Prompt m, e have 0 DCA
• By measuring the DCA to the primary vertex, we can separate D, B 

decays from prompt leptons and from long-lived decays from π, K



Projected Luminosities & Strawman PHENIX Run Plan
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sPHENIX – Current Thinking
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sPHENIX – Current Thinking
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With higher luminosities, larger acceptance, and more uniform 
reconstruction:
• High-pT J/ψ  over a range from pT= 0–20 GeV/c.
• J/ψ  elliptic flow (v2) over a range of pT= 0–10 GeV/c.
• J/ψ  polarization in multiple frames, encoding information on 
the production mechanisms.
• Feed-down contribution to the J/ψ from the ψ’ and χc.

• J/ψ-hadron and J/ψ-jet correlations.



Summary

• The matter created in Au+Au collisions at per nucleon-nucleon 
cms energy of 200 GeV is dense.  Quarks (both the light and the 
heavy) and gluons experience large energy loss while traversing 
this medium. 

• The system is rapidly thermalized from the measurement of 
elliptic flow of light and charmed hadrons.  The quark number 
scaling of the flow (v2) indicates the partonic nature of the 
thermalized medium.

• Such a hot and dense medium emits thermal radiation.  The 
observation of thermal photons allows the determination of the 
initial temperature of the matter!

• Quantitative study of heavy quarkonia suppression continues. 
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THANKS
Stay tuned.
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The dust isn’t likely to settle soon!



BACKUPS
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Tale of the Tape:
Begun Operation June 2000
550 Scientists, 14 Countries, 69 Inst. 
18 Detector subsystems
4 Spectrometer arms 

Large electromagnets
Total weigh = 3500 Tons
>300,000 readout channels now
>3,000,000 channels w/Upgrades 
 >125 Varieties of custom printed circuit 
boards
We can take 16 Terabytes of data/day

Fills One 100 GB computer hard disk 
every 3 ½ minutes 

Operate 7-8 months/year (24/7)
Maintain/repair 4-5 months/yr

Major components built everywhere 
US, Russia, Japan, Brazil, Israel, 
France, Sweden, Germany, Korea

It takes ~110 people/wk to operate 
PHENIX while  taking data

PHENIX is designed to probe 
fundamental features of the strong 
nuclear force, Quantum Chromo 
Dynamics (QCD)        
•PHENIX took  approx. 10 years and 
$120M to design, build & 
commission
•We are finishing our 9th year of 
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Approx 500 tracks result 
from a Au+Au ion collision
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What are the CNM effects that are so strong in Quarkonia production?

Reasonable agreement with EPS09 
nPDF + σbr=4 mb  for central 
collisions but not peripheral

CGC calculations  can’t reproduce 
mid-rapidity (Nucl. Phys. A 770(2006) 

40)

EPS09 with linear thickness 
dependence fails to describe 
centrality dependence of forward 
rapidity region.

J/ψ in d+Au – learning about CNM thickness dependence (I)

PHENIX arXiv:1010.1246, accepted in PRL
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Vary the strength of suppression (a) & 
see what relationship between RdAu and 
RCP is given strictly by Glauber 
geometry for different dependences on 
density-weighted thickness

Woods-Saxon

• Break-up has exponential dependence
• EPS09 & initial-state dE/dx have 
unknown dependences

What are the CNM effects that are so strong in Quarkonia production?
J/ψ in d+Au – learning about CNM thickness dependence (II)

PHENIX arXiv:1010.1246, accepted in 
PRL
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Exponential :   M(rT ) = e−aΛ(rT )
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Exponential :   M(rT ) = e−aΛ(rT )
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Linear :   M(rT ) =1− aΛ(rT )
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Vary the strength of suppression (a) & 
see what relationship between RdAu and 
RCP is given strictly by Glauber 
geometry for different dependences on 
density-weighted thickness

Woods-Saxon

• Break-up has exponential dependence
• EPS09 & initial-state dE/dx have 
unknown dependences

What are the CNM effects that are so strong in Quarkonia production?
J/ψ in d+Au – learning about CNM thickness dependence (II)

The forward rapidity points suggests a quadratic 
or higher geometrical dependence

PHENIX arXiv:1010.1246, accepted in 
PRL

€ 

Exponential :   M(rT ) = e−aΛ(rT )

€ 

Linear :   M(rT ) =1− aΛ(rT )

€ 

Quadratic :   M(rT ) =1− aΛ(rT )2
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Recreate the Matter State of the Early Universe

• Our expanding universe must have started out much hotter and denser 
than it is today because the expansion caused matter and energy to cool 
down and spread out with time.
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Reaction Plane and Elliptic Flow

Spatial anisotropy 
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Reaction Plane and Elliptic Flow

Spatial anisotropy 
Fourier expansion of the distribution of produced particle angle wrt 
reaction plane (Δφ):
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Reaction Plane and Elliptic Flow

• Momentum anisotropy reflects the characteristics of the hot, dense medium
– Small mean free path, thermalization, pressure gradients

• v2 long considered a powerful probe for QGP studies

Spatial anisotropy 

Px

Py
Pz

Momentum anisotropy 

Elliptic
Flow

Fourier expansion of the distribution of produced particle angle wrt 
reaction plane (Δφ):
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