Results from PbPb Collisions Measured by the CMS Detector

Charles F. Maguire

for the CMS Collaboration

SESAPS @ Roanoke Virginia, October 21, 2011

The Large Hadron Collider at CERN

C. Maguire

The Heavy Ion Experiments at the LHC at CERN

Results from PbPb Collisions Measured by the CMS Detector

The First Day of HI Collisions by the LHC into CMS

Event Display Taken on November 14, 2010 at 6:37 PM (Geneva) A central collision of Pb+Pb at 2.76 TeV/nucleon-pair lights up the CMS detector

The CMS Detector

The Goals (as at RHIC) and the Tools (RHIC++)

To produce QGP and characterize its properties

- Energy density and T: location on the phase diagram ?
 - $dN_{ch}/d\eta$, $dE_T/d\eta$, quarkonimum melting (J/ ψ , Y measurements)
- Viscosity, speed of sound: Transport of momentum and energy
 - collective flow and di-hadron correlations
- Opacity, diffusion: Transport of particles
 - Charged hadron R_{AA}
 - Di-jets
 - Heavy flavor
 - Isolated photons R_{AA}
 - Z-boson R_{AA}
- Color screening

- colored probes: *sensitive* to the strong interaction
- **Colorless probes:** *insensitive* to the strong interaction

Data Taking During the PbPb Run

Note: luminosities will be rescaled by few% after complete analysis of Van der Meer scans

13 CMS HI papers from LHC PbPb run 2010

- * HIN-10-001: Multiplicity
- * HIN-10-002: Elliptic flow
- * HIN-10-003: Z bosons
- * HIN-10-004: Dijets
- * HIN-10-005: Charged spectra
- * HIN-10-006: Quarkonia
- * HIN-11-001: Correlations ("ridge")
- * HIN-11-002: Photons
- * HIN-11-003: Energy flow
- * HIN-11-004: Fragmentation functions
- * HIN-11-005: Flow (higher harmonics)
- * HIN-11-006: "Ridge" vs. centrality
- * HIN-11-007: Upsilon
- + a couple more not yet preliminary results

- \rightarrow arXiv1107.4800, JHEP, accepted
- → PAS (CDS record 1347788)
- → PRL 106 (2011) 212301
- → PRC 84 (2011) 024906
- \rightarrow PAS (CDS record 1352777)
- → PAS (CDS record 1353586)
- → JHEP 1107 (2011) 076
- → PAS (CDS record 1352779)
- → PAS (CDS record 1354215)
- → PAS (CDS record 1354531)
- → PAS (CDS record 1361385)
- \rightarrow PAS (CDS record 1353583)
- → PRL 107 (2011) 052302

PAS: Physics Analysis Summary CDS: CERN Document Server

GLOBAL OBSERVABLES

C. Maguire

Results from PbPb Collisions Measured by the CMS Detector

Charged Particle Multiplicity

• Uses pixel tracker and two methods

arXiv1107.4800, accepted JHEP

• Data : B=0T ; Trigger with 99% efficiency, 1% UPC contamination

- Central multiplicity $dN_{ch}/d\eta$ =1610 ± 55 for 0-5% centrality
- $dN_{ch}/d\eta/$ (0.5 N_{part}) a factor 2.1 > RHIC ; similar centrality dependence

C. Maguire

$dE_T/d\eta$: Rapidity and Centrality Dependence

- $dE_T/d\eta$ ($\eta = 0$) $\approx 2 \text{ TeV}$ by a factor of 3.4±0.4 higher than RHIC
- $dE_T/d\eta/(0.5 N_{part})$: Monotonic increase with N_{part}

$dN_{ch}/d\eta$ and $dE_T/d\eta$: $\sqrt{s_{NN}}$ Dependence

- $dN_{ch}/d\eta/$ (0.5 N_{part}) and $dE_T/d\eta/$ (0.5 N_{part}) power law increase with $\sqrt{s_{NN}}$
- $dE_T/d\eta/(0.5 N_{part})$ rises faster => More energy per particle than at RHIC

Anisotropic Flow in HI Collisions

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\varphi - \Psi_{\rm RP})]\right)$$

$$v_n = \langle \cos[n(\varphi - \Psi_{\rm RP})] \rangle$$

anisotropic flow coefficients

- \succ v₂ has been extensively studied, and to a lesser extent v₄ and v₆
- \succ v₃ and v₅ were surprisingly found to be non-negligible
- An understanding of all the harmonics will provide new insights on the properties of the quark-gluon-plasma "near-perfect" liquid
- > CMS has measured v_n , with n = 2 6, in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV using twoparticle and multi-particle techniques
- Non-flow effects such as resonance decays and jets will complicate the hydrodynamic analysis of the particle correlations

A Closer Look at Anisotropic Flow

Schematic of a heavy ion collision:

Fourier decompose the azimuthal angle of the particle emission spectrum with respect to the reaction plane:

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} (1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \Psi_{r})))$$

 $v_n = \left\langle \cos(n(\phi - \Psi_r)) \right\rangle$

Second Fourier coefficient n=2 quantifies the particle emission "in-plane" versus "out-of plane"

Final State Momentum Anisotropy

Measuring the v_2 coefficient can constrain hydrodynamic and transport properties of the hot and dense medium produced in the collision.

Four Methods Used for Extracting v₂ Signal

Event Plane

- based on particle correlations with the event plane
- gives an estimate of the reaction plane
- requires corrections for the detector acceptance

2nd Order Cumulant

based on 2-particle correlations

4th Order Cumulant

- based on 4-particle correlations
- removes lower order non-flow effects

Lee-Yang Zeros

- based on all particle correlations in each event
- removes non-flow effects

Higher order harmonics up to v_6 were measured using select methods:

v_n Measurements from CMS

Results from PbPb Collisions Measured by the CMS Detect

Elliptic flow at Mid-Rapidity: LHC and RHIC

Similar p_T dependence

- CMS: EP , $\Delta \eta > 1$
- PHENIX: EP

15-30% increase in integral v₂

- CMS: 20-30%, v₂{LYZ}
- Extrapolated to $p_T=0$

$v_2(\eta)$: Centrality Dependence

- Multiple methods give a handle on non-flow and fuctuations
- Weak η- dependence, except for most peripheral (EP and v2{2})
- may constrain descriptions of the longitudinal dynamics

C. Maguire

v₃ (p_T): Comparison of Methods

• Non-flow dominate v_3 {2} at high p_T and in peripheral collisions

C. Maguire

Results from PbPb Collisions Measured by the CMS Detector

The Full Harmonic Spectrum

• v_n vs N_{part} shows different trends:

- even harmonics have similar centrality dependence:
 - decreasing \rightarrow 0 with increasing N_{part}
- v_3 has weak centrality dependence, finite for central collisions

HARD PROBES

Results from PbPb Collisions Measured by the CMS Detector

High p_T Charged Hadrons: Spectra and R_{AA}

- Measuring charged tracks up to $p_T \sim 100 \text{ GeV/c}$ (jet triggers)
- Strong constraints to energy loss models

A Colorless Probe: Isolated High p_T Photons

As expected: no nuclear modifications seen

http://cdsweb.cern.ch/record/1352779?ln=en

A New Colorless Probe for the QGP: Z Bosons

arXiv:1102.5435

C. Maguire

R_{AA} Summary

Jet Quenching: The Opposite of Transparency

Quantify the di-jet energy imbalance by asymmetry ratio

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Di-jet Imbalance

- Di-jet imbalance increases with centrality
- Not reproduced by MC (PHYTHIA + PbPb data)

Results from PbPb Collisions Measured by the CMS Detector

Jet Angular Correlations

Back-to-back even in central collisions

Where Does the "Lost" Energy Go?

The momentum difference in the dijet is balanced by low p_T particles

CMS PAS HIN-10-004

Phys. Rev. C 84 (2011) 024907

Jet Results Summary

Compact Muon Solenoid: µ⁺µ⁻ Invariant Mass

J/ψ and Υ

- J/ ψ and Υ observed in $\mu^+\mu^-$ channel
- CMS muon acceptance |η|<2.4, p_{Tµ}>2-4 GeV/c
- Excellent mass resolution ~1%, comparable to pp
- Use displaced vertices to separate prompt J/ ψ and B-decays

 N_{γ} =86±12

http://cdsweb.cern.ch/record/1353586?In=en

All quarkonia suppressed: R_{AA} vs. centrality

- Non-prompt J/ ψ suppression is a measure of b-quark quenching
- High $p_T J/\psi$ is strongly suppressed at the LHC
- Inclusive Y(1S) is suppressed

Suppression of excited Υ states

- Excited states $\Upsilon(2S,3S)$ relative to $\Upsilon(1S)$ are suppressed
- Probability to obtain measured value, or lower, if the real double ratio is unity, has been calculated to be less than 1%

Summary

- Broad experimental program and excellent detector performance
- CMS has obtained significant statistics of hard probes
- CMS conducted detailed measurements of global properties of medium in PbPb and pp collisions
- Our measurements indicate consistent view of the hot and dense medium
 - Strong collective effects in the medium
 - No quenching of weakly and electromagnetically interacting probes
 - Strong quenching of partons, including b-quarks
 - Suppression of quarkonia, including excited states of the Υ

Results from PbPb Collisions Measured by the CMS Detector

Isolated photons

- Colorless probes
 - Check suppression
 - Nuclear parton distribution function
 - Initial state
- Photon selection
 - Identify isolated electromagnetic clusters
 - E_{HCAL}/E_{ECAL} <0.2
 - Energy in cone (R<0.4) less than 5 GeV
 - Transverse shower shape

J/ψ : prompt and from B decays

- Use separation of primary and μ⁺μ⁻
 vertices in plane transverse to beam
- Long B decay times lead to displaced vertices
- Separate:
 - Prompt J/ ψ production
 - Non-prompt J/ψ from B decays

Muon reconstruction mechanism

through CMS

- With information from inner tracker and muon stations, global muons reconstructed
- Global muons need p ≥ 3 GeV to reach the muon station, but loose 2~3 GeV energy in the absorber(iron yoke) so total momentum of the muon that reach the muon stations is ≈ 5 GeV (depending on eta)

Fragmentation Functions

CMS PAS HIN 11-004

Leading and sub-leading jets in PbPb fragment like the corresponding energy jet in pp

C. Maguire

Results from PbPb Collisions Measured by the CMS Detector

Take home messages from CMS

