

ATLAS in 2011: Status and Prospects

Dick Greenwood

Louisiana Tech University

SESAPS, October 22, 2011

OUTLINE

- The LHC and the Collider Community
- The ATLAS Detector an overview
- Luminosity 2010-2011
- Brief description of how we do Physics at colliders
- Selected Physics Results
- Plans for the future
- Conclusions

LHC @ CERN Aerial View

France

CMS

Geneva Airport

ATLAS

Swizerland

US ATLAS Members

The ATLAS Detector

ATLAS: "A Toroidal LHC ApparatuS"

3-level trigger reduces the rate from 40 MHz to ~200 Hz

EM calorimeter: Pb-LAr Accordion e/ γ trigger, identification measurement E-resolution: σ /E ~ 10%/ \sqrt{E}

Muon Spectrometer ($|\eta|$ < 2.7) : air-core toroids gasbased chambers Trigger 6 to 40 GeV & Reconstruction $\Delta P \mu / P \mu < 10\%$ up to $P \mu \sim 1$ TeV

> Inner Detector ($|\eta| < 2.5, B = 2T$): Precise tracking and vertexing e/π separation $\sigma/pT \sim 3.8x10-4$ pT (GeV) \oplus 0.01

HAD calorimetry (semperator radiation tracker segmentation, hermeticity Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E_T E-resolution: $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$

Luminosity

Exponential increase in 2010

Continued steady delivery of beam in 2011

ATLAS Measures Energy Deposits & Tracks of "Objects of Interest"

- These objects are:
 - Hadronic Jets
 - Electrons, muons,taus
 - Photons
 - Missing E_T
 - ..
- "Patterns" of identified objects are:
 - Recognized by sophisticated triggers (hardware & software);
 - compiled: saved as "event" data (stored, distributed, histogrammed);
 - then analyzed: compared to predictions of theoretical models (SM & Beyond SM).
- These analyses are done by individual Physics groups: QCD, Electroweak, Higgs, Top, B-physics, Exotics, SUSY, etc.

Parton-, Particle-, Detector- "Jets"

- Use Jet Definition to relate Observables
 defined on Partons, Particles, Detector
- Direct Observation: Energy Deposits / Tracks
 Stable Particles (=True Observable)
 Idealized: Parton-Jets

no Observable (color confinement) but: quantity predicted in pQCD

Selected QCD Results

Dijet Production

do / dM_{jj} [pb/(GeV/c²)] 10² central dijet production |y| < 1Expectations from NLO pQCD test pQCD predictions 10 Excited quark sensitive to new particles decaying into dijets: excited quarks, Z', W', 10⁻¹ Randall-Sundrum gravitons, color-10⁻² octet, techni-rho, axigluons, colorons 10⁻³ Events Energy = 7 TeV, Luminosity = 163 pb 10-4 Data Fit 10⁻⁵ 10 ••••• q*(1000) 1000 1200 M_{II} [GeV/c²] 200 400 600 800 --- a*(1700) 10^{2} -- a*(2750) 10 2010 + early10 20ll data ATLAS Preliminary 13 1000 2000 3000 4000

Reconstructed m. [GeV]

Dijet Production

central dijet production |y|<1

- test pQCD predictions
- sensitive to new particles decaying into dijets: excited quarks, Z', W', Randall-Sundrum gravitons, coloroctet, techni-rho, axigluons, colorons

Dijet Azimuthal Decorrelations

Idea: Dijet Azimuthal Angle is sensitive to QCD radiation (additional jets) Test Parton-Shower Test 3-Jet NLO

A high-pT monojet event – SM interpretation $Z \rightarrow \nu \nu \nu + jet$

Run Number: 180309, Event Number: 36060682 Date: 2011-04-27 02:33:15 CEST

Monojet (Jet + ET_{miss})

High-pT jet opposite ~no activity:Standard Model: $Z \rightarrow \nu \ \nu$ or Large-extra dimensions with unobserved graviton

Selected Top Physics results

Wide range of analyses completed this summer with 0.7 fb⁻¹ with 2011 data:

- mass, cross-section updates
- spin correlations
- W helicity

Events / 10 GeV

450

400

350

300 250

> 0 100

top to tau decays

Dileptonic tt cross-section, l+jets update for LP ~±6.5%

Selected SUSY Search

The collision of two protons results in the production of a squark and an antisquark (the super-partner of the quark and its antiparticle). These decay into lighter particles, one of which,a "chargino", also decays into still more particles.

Selected Higgs results

- H→γγ: rare channel, but the best for low mass
- H→WW^(*):
 - →lvlv: very important in the intermediate mass range
 - → lvqq: highest rate, important at high mass
- **H→ZZ**^(*):
 - − \rightarrow 41: golden channel
 - − → llvv: good for high mass
 - − \rightarrow llbb: also high mass
- H→ττ: good signal/ background, important at low mass, rare
- Associated prod. H→ bb-bar
 - ttH, WH, ZH
 - It is useful for the discovery
 - It is very important for Higgs property studies if SM Higgs is discovered

Events expected to be produced with L=1 fb⁻¹

m _H , GeV	ww→lvlv	zz→4I	γγ
120	127	1.5	43
150	390	4.6	16
300	89	3.8	0.04

Selected Higgs results

The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of m_H is indicated by the solid line. This is a 95% CL limit using the CLs method in the entire mass range.

Channels used in the Combination:

1. $H \rightarrow \gamma\gamma$ 2. $VH, H \rightarrow bb$ 3. $H \rightarrow \tau\tau$ 4. $H \rightarrow WW^{(*)} \rightarrow lvlv$ 5. $H \rightarrow ZZ^{(*)} \rightarrow llll$ 6. $H \rightarrow ZZ^{(*)} \rightarrow llvv$ 7. $H \rightarrow ZZ^{(*)} \rightarrow llqq$

Standard Model Higgs boson mass excluded at 95% C.L.: 146<mH<232, GeV 256 <mH< 282 GeV 296 <mH< 466 GeV

Plans for 2011-2012

- Many of the present analyses will be updated to 2 fb⁻¹ in next few weeks
- Proton physics will continue for \sim two weeks, expecting >4.6 fb⁻¹
- Heavy ion physics during last 3 weeks of November up to Christmas shutdown starting ~Dec. 7
- Planning of analysis strategies for the next round of Winter Conferences is ongoing
- 2012 LHC running parameters still to be fully defined- looking into higher beam energy but cautiously
- Early LHC upper limits on the presence of new physics underscore the importance of developing the tools necessary to understand the Standard Model at a level of precision necessary to be able to recognize deviations due to new physics
- Certainly challenging and exciting times are ahead!

Conclusions

- Since SESAPS 2010, the LHC and ATLAS continue to work very well!
- Many important measurements now available at $\sqrt{s} = 7 \text{ TeV}$
- No evidence yet of Beyond-SM physics
- After more than 2 fb⁻¹ of data has been analyzed by ATLAS to perform

Higgs searches, no significant excess (< 2.1σ) is found in the mass range 110-600 GeV studies by ATLAS; exclusion limits at 95%C.L. are placed in the mass regions:

- 146 < mH< 232 GeV
- 256 < mH< 282 GeV
- 296 < mH< 466 GeV
- Early LHC upper limits on the presence of new physics underscore the importance of developing the tools necessary to understand the Standard Model with even greater precision.