

A Diamond Micro-strip Electron Detector for Compton Polarimetry

Amrendra Narayan

Mississippi State University

on behalf of Hall - C Compton Team

Outline

- ✤ Need of careful Polarimetry
- ✤ Hall C Compton Overview
- Electron detector
- ✤ Data acquisition
- Preliminary results

Qweak and Polarimetry

The Qweak experiment aims to measure the weak charge of the proton with a precision of 4.1%, by measuring the parity violating asymmetry in polarized e-p elastic scattering with a precision of 2.5%

Qweak Error Bu			
Uncertainty	$\delta A_{PV}/A_{PV}$	δQw/Qw	
Statistical (~2500 hours at 150 μ A)	2.1%	3.2%	
Systematic:		2.6%	one of the larges experimental contribution to the error budget
Hadronic structure uncertainties		1.5%	
Beam polarimetry	1.0%	1.5%	
Effective Q ² determination	0.5%	1.0%	
Backgrounds	0.5%	0.7%	
Helicity-correlated beam properties	0.5%	0.7%	
Total:	2.5%	4.1%	

The Hall-C Moller polarimeter is the highest precision polarimeter at JLab, however it is periodic, invasive and operates only at low currents..

The new Compton polarimeter is **continuous**, **non invasive** and can operate at **high currents**.

Overview: Compton Layout

Parameter	Value
Beam Energy	1.16 GeV
Laser Wavelength	532 nm
Chicane bend angle	10.1 deg
Electron free drift distance	1.6 m
Max. Electron Displacement	17 mm
Compton edge energy	46 MeV

Overview: e-detector

Through the γ -detector and e-detector we have two independent measurements having different uncertainties hence being a good cross-check on each other

- We use diamond micro-strip detector for detecting the Compton scattered electrons
- We have 4 planes of the detector to allow coincidence measurements

e-detector: working

The detector uses Diamond which is artificially grown using Chemical Vapor Deposition

e-detector: installation

e-detector: installed

Mississippi State University

e-detector

This is the **first** Diamond microstrip detector to be used as a tracking device in an experiment

- ➢ alumina (ceramic) used for carrier board
- metallization (on diamond) done with TiPtAu
- detector dimensions : 21 mm x 21 mm
- \blacktriangleright detector thickness: 500 µm
- each detector plate has 96 strips
- \blacktriangleright strip pitch is 200 µm.

e-detector DAQ

e-detector DAQ

v1495 : CAEN general purpose logic modules. The module was programmed for trigger generation and data readout using VHDL

* Field Programmable Gate Array

e-detector DAQ : schematic

Asymmetry

Calculating Polarization

Fitting the calculated asymmetry to the measured asymmetry gives us the beam polarization

Calculating Polarization

- The Compton edge for the theoretical Compton asymmetry is fixed at 17.6 mm from the beam (based on known beam parameters and detector geometry)
- Polarization is obtained by performing a two parameter fit with polarization and effective pitch

Preliminary Polarization

- 42 days of Compton data
- each point represents a ~ 1 hr run
- only Partial systematic error (due to strip – pitch) included
- the dotted vertical lines represent spot changes on the photocathode
- the dashed vertical line represents Re-activation
- on an average the beam current was $\sim 160 \ \mu A$

Quantum efficiency

Zooming into a region of consecutive spot changes:

100 97.5 95 Polarization(%) 92.5 90 87.5 85 Moller (QWEAK) 82.5 eDet (IHWP OUT) 80 eDet (IHWP IN) 77.5 21880 21900 21820 21840 21860 Time (a.u) 97.5 eDet (IHWP OUT) 95 eDet (IHWP IN) Polarization(%) 92.5 90 87.5 85 Moller (QWEAK, 2010) 82.5 oller (GE, GE, -27, 2007) 80 Fit from Moller 2007 77.5 1.2 0.2 0.4 0.8 0.6 1.4 0 Quantum Efficiency (%)

Polarization was found to drop significantly before the spot move

Mississippi State University

Systematic errors

Error Contribution	(%) Value
Due to detector strip size	0.2 %
Detector geometry	0.15 %
Difference between planes	0.2 %
Magnetic field	? (MC)
Beam & Laser Position	? (very small)
Charge Asymmetry	? (very small)
Dead time	? (very small)
TBD	?
Laser Polarization	99.5 +/- 0.4% (overall)
Total	0.50 %

Summary

- ✓ This is the first Diamond micro-strip detector to be used as a tracking device in an experiment
- ✓ Despite several challenges posed by the electronic noise environment, leading to strict trigger condition, we achieved the design goal of < 1% statistical uncertainty and projected low systematic
- ✓ All set to provide an independent absolute polarization measurement for Hall-C beam

Thanks

This presentation was made possible due to significant contribution from **Vladas Tvaskis, Dipangkar Dutta**

The speaker can be contacted at narayan@jlab.org

e-detector DAQ: Trigger

- to suppress background, we require a coincidence between multiple planes
- default trigger is hits on 2 out of 4 planes
- we localize the trigger in a single detector plane to 4 consecutive strips

Charge normalized strip hit

Background subtraction

$$N_{Laser On}^{+} = N_{Laser On}^{+} - Time_{Laser On}^{+} / Time_{Beam Off} \times N_{Beam Off}$$

$$N_{Laser Off}^{+} = N_{Laser Off}^{+} - Time_{Laser Off}^{+} / Time_{Beam Off} \times N_{Beam Off}$$

$$N_{Laser On}^{-} = N_{Laser On}^{-} - Time_{Laser On}^{-} / Time_{Beam Off} \times N_{Beam Off}$$

$$N_{Laser Off}^{-} = N_{Laser Off}^{-} - Time_{Laser Off}^{-} / Time_{Beam Off} \times N_{Beam Off}$$

Mississippi State University

why diamond ?

Property	Silicon	Diamond	
Band Gap (eV)	1.12	5.45	Low leakage current, short noise
Electron/Hole mobility (cm²/Vs)	1450/500	2200/1600	Fast signal
Saturation velocity (cm/s)	0.8×10 ⁷	2×10 ⁷	collection
Breakdown field (V/m)	3×10 ⁵	2.2×10 ⁷	
Dielectric Constant	11.9	5.7	Low capacitance, noise
Displacement energy (eV)	13-20	43	Radiation hardness
e-h creation energy (eV)	3.6	13	
Av. e-h pairs per MIP per micron	89	36	Smaller
Charge collection distance (micron)	full	~250	signal