

Angular Distribution in the CM Frame of Direct Photons at CMS

Vanessa Gaultney Werner, Florida International University SESAPS 2011 Conference Roanoke, VA

Tracking System: Detects charged particles

Electromagnetic Calorimeter (ECAL): Detects electrons, photons

Hadronic Calorimeter (HCAL): Detects jets (hadrons)

10/21/11

Previous Measurements

Introduction

- $2 \rightarrow 2$ process, massless approximation
 - Outgoing particles are back-to-back in the CM frame

 θ^* is the angle between the outgoing partons and the beam axis. The goal of this analysis is to measure $\cos\theta^*$ and compare with NLO QCD

Direct Photons

Direct photons originate from the hard scatter in proton-proton collisions

Angular distribution in CM frame directly linked to $|\mathcal{M}|^2$

V. Gaultney SESAPS 2011

Selection

- Data taken During March-November 2010, 36 pb⁻¹
- Event Selection $(1 \gamma + 1 \text{ jet})$
 - Veto beam gas interactions, beam scraping
 - Require good quality primary vertex
- Photon ID
 - $p_T^{\gamma} > 25 \text{ GeV}$
 - $|\eta^{\gamma}| < 1.4442$
 - $Energy_{hadronic}/Energy_{EM} < 0.05$
 - Veto Tracker Pixel Match (electrons)
 - Isolation
 - Hollow Cone Track Isolation < 2.0+0.001 p_T^{γ}
 - Electromagnetic Isolation < 4.2+0.001 p_T^{γ}
 - Hadronic Isolation < $2.2+0.003p_T^{\gamma}$
- Jet ID

 $\Delta R_i = 0.06, \Delta R_o =$

0.4

Photon Discriminant

$\bullet \sigma_{i\eta i\eta}$ is the shower width of a photon candidate in η

•Shows strong discriminating power for signal and background

•Background template obtained through a data-driven technique

> •Use a variable normally cut to select signal and invert to select background

–Hollow Cone Track Isolation

•Plot Integral, take the difference at each point...point of largest difference is boundary location

10/21/11

Integral

Background Estimation in Data

- Two-bin purity technique
- Similar to ABCD method:
 - Divide space into 4 regions
 - Assumes A/C = B/D and
 B/D can be determined
 from data

Background Estimate

$$P = \frac{f_{data} - f_{bkg}}{f_{sig} - f_{bkg}}$$

We parameterize the dependence on $p_{\rm T}$

Employ weighting on an event-byevent basis using equivalent expressions to *P*:

If candidate is below bin boundary

$$w_{-} = \frac{1 - f_{bkg}}{f_{sig} - f_{bkg}}$$

If candidate is above bin boundary

$$W_{+} = \frac{-f_{bkg}}{f_{sig} - f_{bkg}}$$

V. Gaultney SESAPS 2011

10/21/11

Preliminary Results

- Systematic Uncertainties
 - Fit parameters < 10%
 - JES < 5%
 - background shape uncertainty (ongoing)
- Theory
 - J.F. Owens
 - [Phys.Rev. D 42, 61–71 (1990)]
 - CT10 PDF and variations (band dominated by MC statistics)

10/21/11

Summary

- $\cos \theta^*$ is a direct probe into partonic cross section
 - Has not been measured since the early days of the Tevatron
 - Data shows good agreement with NLO QCD Theory
- Sensitivity to PDFs currently under study

 y_{boost} may be affected
- Future 2011 analysis plans include studying fragmentation