Cyclically competing species: deterministic trajectories and stochastic evolution

Michel Pleimling

Department of Physics Virginia Tech

October 21, 2011

< D > < B > < E >

Content

- Cyclic dominance of competing species: real-world examples
- Predation and exchange rates
- The well-mixed situation: spaceless model
 - Mean field results: deterministic trajetories
 - Stochastic evolution: extinction events
- Coarsening and coexistence in one dimension
- Coarsening in two dimensions

Acknowledgement

DMR-0705152, DMR-0904999, DMR-1005417

Siddharth Venkat

Clinton Durney, Sara Case, Royce Zia

David Konrad, Ahmed Roman

Cyclic dominance of competing species

real-world example: lizard populations in southern California (Sinervo/Lively '96)

Cyclic dominance of competing species

real-world example: competing bacterial strains (*Escherichia coli*) (Kerr et al. '02)

Rock-Paper-Scissors game

three cyclically competing species: Rock-Paper-Scissors game

$$\begin{array}{rrrr} a+b & \stackrel{k_a}{\longrightarrow} & a+a \\ b+c & \stackrel{k_b}{\longrightarrow} & b+b \\ c+a & \stackrel{k_c}{\longrightarrow} & c+c \end{array}$$

three ways of realizing mobility when on a lattice:

• exchange of individuals

$$a+b \stackrel{s_{ab}}{\leftarrow} b+a$$
$$b+c \stackrel{s_{bc}}{\leftarrow} c+b$$
$$c+a \stackrel{s_{ca}}{\leftarrow} a+c$$

conserved quantity: $N_a + N_b + N_c = N$

- empty sites
- multiple occupancy of sites

Four species model

$$\begin{array}{rrrr} a+b & \stackrel{k_a}{\longrightarrow} & a+a \\ b+c & \stackrel{k_b}{\longrightarrow} & b+b \\ c+d & \stackrel{k_c}{\longrightarrow} & c+c \\ d+a & \stackrel{k_d}{\longrightarrow} & d+d \end{array}$$

mobility on the lattice: exchange of individuals

$$a+b \stackrel{s_{ab}}{\leftarrow} b+a$$
$$b+c \stackrel{s_{bc}}{\leftarrow} c+b$$
$$c+d \stackrel{s_{ca}}{\leftarrow} d+c$$
$$d+a \stackrel{s_{ca}}{\leftarrow} a+d$$

conserved quantity: $N_a + N_b + N_c + N_d = N$

formation of partner-pairs!

◆□ > ◆□ > ◆目 > ◆目 > ● □ ● ● ●

configuration space for three species

(日)、

∢ ≣ ≯

three absorbing states

configuration space for four species

ac and bd pairs do not interact

 \implies final (absorbing) state displays coexistence of these pairs

every point along a - c and b - d edges represents such a state $\implies 2(N + 1)$ absorbing states

mean field approximation for the evolution of the averages of the fractions

$$A(t) \equiv \sum_{\{N_m\}} (N_a/N) P(\{N_m\}; t) \quad \text{etc.}$$

neglect all correlations and replace averages of products by the products of averages

MF equations $(k_a + k_b + k_c + k_d = 1)$:

$$\partial_t A = [k_a B - k_d D] A$$

$$\partial_t B = [k_b C - k_a A] B$$

$$\partial_t C = [k_c D - k_b B] C$$

$$\partial_t D = [k_d A - k_c C] D$$

mean field approximation for the evolution of the averages of the fractions

$$A(t) \equiv \sum_{\{N_m\}} (N_a/N) P(\{N_m\}; t) \quad \text{etc.}$$

neglect all correlations and replace averages of products by the products of averages

MF equations $(k_a + k_b + k_c + k_d = 1)$:

$$\partial_t \ln A = k_a B - k_d D$$

$$\partial_t \ln B = k_b C - k_a A$$

$$\partial_t \ln C = k_c D - k_b B$$

$$\partial_t \ln D = k_d A - k_c C$$

contributions from a single species to the growth/decay of two other species:

$$\partial_t \left[k_b \ln A + k_a \ln C \right] = \lambda D$$

$$\partial_t \left[k_c \ln A + k_d \ln C \right] = \lambda B$$

$$\partial_t [k_c \ln B + k_b \ln D] = -\lambda A$$

$$\partial_t [k_d \ln B + k_a \ln D] = -\lambda C$$

key control parameter: $\lambda \equiv k_a k_c - k_b k_d$

quantity

$$Q \equiv \frac{A^{k_b + k_c} C^{k_d + k_a}}{B^{k_c + k_d} D^{k_a + k_b}}$$

evolves in an extremely simple manner:

$$Q(t) = Q(0) e^{\lambda t}$$

・ロト ・同ト ・ヨト ・ヨト

- $\lambda = 0 \longrightarrow k_a k_c = k_b k_d$
- \boldsymbol{Q} is a constant of motion

saddle-shaped orbits and fixed points

(ロ) (四) (三) (三)

 $(k_a, k_b, k_c, k_d) = (0.4, 0.4, 0.1, 0.1)$ and $(A_0, B_0, C_0, D_0) = (0.02, 0.10, 0.48, 0.40)$

- $\lambda = 0 \longrightarrow k_a k_c = k_b k_d$
- \boldsymbol{Q} is a constant of motion

 $(k_a, k_b, k_c, k_d) = (0.4, 0.4, 0.1, 0.1)$ and $(A_0, B_0, C_0, D_0) = (0.02, 0.10, 0.48, 0.40)$

 $\lambda \neq 0$

$$Q(t) = Q(0) e^{\lambda t}$$
 with $Q \equiv \frac{A^{k_b + k_c} C^{k_d + k_a}}{B^{k_c + k_d} D^{k_a + k_b}}$

spirals and arrows

<ロ> (四) (四) (日) (日) (日)

starting from symmetry point with $\lambda = -0.0273$

going beyond mean field approximation: numerical simulations

 $\lambda = 0$: stochastic effects

1000 particles, $(k_a, k_b, k_c, k_d) = (0.4, 0.4, 0.1, 0.1)$ and $(A_0, B_0, C_0, D_0) = (0.02, 0.10, 0.48, 0.40)$

going beyond mean field approximation: numerical simulations

 $\lambda \neq 0$: extinction events

 $(k_a, k_b, k_c, k_d) = (0.1, 0.0001, 0.1, 0.7999)$ and $(A_0, B_0, C_0, D_0) = (0.1, 0.7, 0.1, 0.1)$

going beyond mean field approximation: numerical simulations

 $\lambda \neq 0$: extinction events

 $(k_a, k_b, k_c, k_d) = (0.1, 0.0001, 0.1, 0.7999)$ and $(A_0, B_0, C_0, D_0) = (0.1, 0.7, 0.1, 0.1)$

going beyond mean field approximation: numerical simulations

 $\lambda \neq 0$: extinction events

 $(k_a, k_b, k_c, k_d) = (0.1, 0.0001, 0.1, 0.7999)$ and $(A_0, B_0, C_0, D_0) = (0.1, 0.7, 0.1, 0.1)$

Symmetric interaction and swapping rates for three species $$_{\rm space}$$

 $k = 0.9, \ s = 0.1$ $k = 0.1, \ s = 0.9$

< D > < B > < E >

Symmetric interaction and swapping rates for three species

average domain size (for k + s = 1)

swapping rates *s* larger than $s_c \approx 0.84$: exchange mechanism very effectively mixes different species \rightarrow coexistence of species is promoted

Symmetric interaction and swapping rates for four species space-time diagrams

 $k = 0.8, \ s = 0.2$ $k = 0.1, \ s = 0.9$ $k = 0.01, \ s = 0.99$

Symmetric interaction and swapping rates for four species average domain size (for k + s = 1)

 \longrightarrow exchanges speed up the coarsening process!

Asymmetric interaction and swapping rates for three species asymmetry in the rates \implies dominance of a single species

Example: $k_a = 0.45$, $k_b = k_c = 0.4$, $s_{bc} = s_{ca} = 0.4$

Asymmetric interaction and swapping rates for three species dynamical phase diagram for $k_b = k_c = 0.4$, $s_{bc} = s_{ca} = 0.4$

I: A dominates, II: B dominates, III: C dominates

three species

May-Leonard model with swapping of particles (Reichenbach '07) $A + B \longrightarrow A + 0, A + 0 \longrightarrow A + A, A + B \longrightarrow B + A$ etc.

/□ ▶ < 三 ▶ <

four species: coexitence, but no well formed space-time patterns

k = 1 and s = 0

Coarsening in two dimensions

four species with exchanges between individuals belonging to a partner-pair

 \implies coarsening of partner-pair domains

$$k = 1$$
 and $s = 0$, $s_{pp} = 1$

Conclusion

Cyclic competition between three and four species

• well-mixed system with four species

key control parameter: $\lambda \equiv k_a k_c - k_b k_d$ mean-field approximation: trajectories shaped like saddles,

spirals, arrows stochastic effects: different extinction scenarios

• three and four species on a ring

different effects due to mobility

three species: high mobility yields coexistence four species: high mobility speeds up coarsening

• four species in the plane

coarsening of partner-pair domains when allowing exchanges of partners

S. Venkat and M. Pleimling Phys. Rev. E **81**, 021917 (2010)

S. O. Case, C. H. Durney, M. Pleimling, and R. K. P. Zia EPL **92**, 58003 (2010)

C. H. Durney, S. O. Case, M. Pleimling, and R. K. P. Zia Phys. Rev. E **83**, 051108 (2011)

・ロト ・同ト ・ヨト ・ヨト

other examples:

- self-organizing Min proteins (Loose et al. '08)
- coral reef invertebrates (Buss/Jackson '79)
- endogeneous and exogeneous origins of diseases modeled as a four-species model (Sornette '09)
- invading grass species (complicated competition between five species) (Silvertown et al. '92)