
Cyclically competing species: deterministic

trajectories and stochastic evolution

Michel Pleimling

Department of Physics

Virginia Tech

October 21, 2011



Content

Cyclic dominance of competing species: real-world examples

Predation and exchange rates

The well-mixed situation: spaceless model

Mean field results: deterministic trajetories

Stochastic evolution: extinction events

Coarsening and coexistence in one dimension

Coarsening in two dimensions



Acknowledgement

DMR-0705152, DMR-0904999, DMR-1005417

Siddharth Venkat Clinton Durney, Sara Case, Royce Zia

David Konrad, Ahmed Roman



Cyclic dominance of competing species

real-world example: lizard populations in southern California
(Sinervo/Lively ’96)



Cyclic dominance of competing species

real-world example: competing bacterial strains (Escherichia coli)
(Kerr et al. ’02)



Rock-Paper-Scissors game

three cyclically competing species: Rock-Paper-Scissors game

a + b
ka−→ a + a

b + c
kb−→ b + b

c + a
kc−→ c + c

three ways of realizing mobility when on a lattice:

exchange of individuals

a + b
sab
⇄ b + a

b + c
sbc
⇄ c + b

c + a
sca
⇄ a + c

conserved quantity: Na + Nb + Nc = N

empty sites

multiple occupancy of sites



Four species model

a + b
ka−→ a + a

b + c
kb−→ b + b

c + d
kc−→ c + c

d + a
kd−→ d + d

mobility on the lattice: exchange of individuals

a + b
sab
⇄ b + a

b + c
sbc
⇄ c + b

c + d
sca
⇄ d + c

d + a
sca
⇄ a + d

conserved quantity: Na + Nb + Nc + Nd = N

formation of partner-pairs!



Well-mixed system

configuration space for three species

A B

C

three absorbing states



Well-mixed system

configuration space for four species

ac and bd pairs do not interact

=⇒ final (absorbing) state displays coexistence of these pairs

every point along a− c and b − d edges represents such a state
=⇒ 2(N + 1) absorbing states



Well-mixed system

mean field approximation for the evolution of the averages of the
fractions

A(t) ≡
∑

{Nm}

(Na/N)P ({Nm} ; t) etc.

neglect all correlations and replace averages of products by the
products of averages

MF equations (ka + kb + kc + kd = 1):

∂tA = [kaB − kdD]A

∂tB = [kbC − kaA]B

∂tC = [kcD − kbB ]C

∂tD = [kdA− kcC ]D



Well-mixed system

mean field approximation for the evolution of the averages of the
fractions

A(t) ≡
∑

{Nm}

(Na/N)P ({Nm} ; t) etc.

neglect all correlations and replace averages of products by the
products of averages

MF equations (ka + kb + kc + kd = 1):

∂t lnA = kaB − kdD

∂t lnB = kbC − kaA

∂t lnC = kcD − kbB

∂t lnD = kdA− kcC



Well-mixed system

contributions from a single species to the growth/decay of two
other species:

∂t [kb lnA+ ka lnC ] = λD

∂t [kc lnA+ kd lnC ] = λB

∂t [kc lnB + kb lnD] = −λA

∂t [kd lnB + ka lnD] = −λC

key control parameter: λ ≡ kakc − kbkd

quantity

Q ≡
Akb+kcC kd+ka

Bkc+kdDka+kb

evolves in an extremely simple manner:

Q (t) = Q (0) eλt



Well-mixed system

λ = 0 −→ kakc = kbkd

Q is a constant of motion

saddle-shaped orbits and fixed points

(ka, kb, kc , kd ) = (0.4, 0.4, 0.1, 0.1) and
(A0,B0,C0,D0) = (0.02, 0.10, 0.48, 0.40)



Well-mixed system

λ = 0 −→ kakc = kbkd

Q is a constant of motion

(ka, kb, kc , kd ) = (0.4, 0.4, 0.1, 0.1) and
(A0,B0,C0,D0) = (0.02, 0.10, 0.48, 0.40)



Well-mixed system

λ 6= 0

Q (t) = Q (0) eλt with Q ≡
Akb+kcC kd+ka

Bkc+kdDka+kb

spirals and arrows

starting from symmetry point with λ = −0.0273



Well-mixed system

going beyond mean field approximation: numerical simulations

λ = 0: stochastic effects

1000 particles, (ka, kb , kc , kd ) = (0.4, 0.4, 0.1, 0.1) and
(A0,B0,C0,D0) = (0.02, 0.10, 0.48, 0.40)



Well-mixed system

going beyond mean field approximation: numerical simulations

λ 6= 0: extinction events

(ka, kb, kc , kd ) = (0.1, 0.0001, 0.1, 0.7999) and
(A0,B0,C0,D0) = (0.1, 0.7, 0.1, 0.1)



Well-mixed system

going beyond mean field approximation: numerical simulations

λ 6= 0: extinction events
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Well-mixed system

going beyond mean field approximation: numerical simulations

λ 6= 0: extinction events

(ka, kb, kc , kd ) = (0.1, 0.0001, 0.1, 0.7999) and
(A0,B0,C0,D0) = (0.1, 0.7, 0.1, 0.1)



Coarsening and coexistence in one dimension

Symmetric interaction and swapping rates for three species

k = 0.9, s = 0.1 k = 0.1, s = 0.9



Coarsening and coexistence in one dimension

Symmetric interaction and swapping rates for three species

average domain size (for k + s = 1)
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swapping rates s larger than sc ≈ 0.84:
exchange mechanism very effectively mixes different species
−→ coexistence of species is promoted



Coarsening and coexistence in one dimension

Symmetric interaction and swapping rates for four species

space-time diagrams

k = 0.8, s = 0.2 k = 0.1, s = 0.9 k = 0.01, s = 0.99



Coarsening and coexistence in one dimension

Symmetric interaction and swapping rates for four species
average domain size (for k + s = 1)
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−→ exchanges speed up the coarsening process!



Coarsening and coexistence in one dimension

Asymmetric interaction and swapping rates for three species
asymmetry in the rates =⇒ dominance of a single species

Example: ka = 0.45, kb = kc = 0.4, sbc = sca = 0.4

0 0.1 0.2 0.3 0.4 0.5
s

ab

0.00

0.25

0.50

0.75
su

rv
iv

al
 p

ro
ba

bi
lit

y

A
B
C



Coarsening and coexistence in one dimension

Asymmetric interaction and swapping rates for three species
dynamical phase diagram for kb = kc = 0.4, sbc = sca = 0.4
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I: A dominates, II: B dominates, III: C dominates



Coarsening in two dimensions

three species

May-Leonard model with swapping of particles (Reichenbach ’07)

A+ B −→ A+ 0, A+ 0 −→ A+ A, A+ B −→ B + A etc.



Coarsening in two dimensions

four species: coexitence, but no well formed space-time patterns

k = 1 and s = 0



Coarsening in two dimensions

four species with exchanges between individuals belonging to a
partner-pair

=⇒ coarsening of partner-pair domains

k = 1 and s = 0, spp = 1



Conclusion

Cyclic competition between three and four species

well-mixed system with four species

key control parameter: λ ≡ kakc − kbkd

mean-field approximation: trajectories shaped like saddles,
spirals, arrows
stochastic effects: different extinction scenarios

three and four species on a ring

different effects due to mobility
three species: high mobility yields coexistence
four species: high mobility speeds up coarsening

four species in the plane

coarsening of partner-pair domains when allowing exchanges
of partners
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Cyclic dominance of competing species

other examples:

self-organizing Min proteins (Loose et al. ’08)

coral reef invertebrates (Buss/Jackson ’79)

endogeneous and exogeneous origins of diseases modeled as a
four-species model (Sornette ’09)

invading grass species (complicated competition between five
species) (Silvertown et al. ’92)


