Hadronic Loop Corrections to Charmonium Decays

Di-Lun Yang (with Thomas Mehen) Duke University

Outline

- The puzzle of M1 radiative transitions between S-wave charmonia.
- The discrepancy between the experimental data and LO chiral perturbation theory for $\psi' \rightarrow J/\psi \pi^0(\eta)$ decays.
- Charmed meson loop correction in the non-relativistic heavy hadron chiral perturbation theory(NRHH² PT).
- Primary goal:

fitting both hadronic and radiative decays to extract the coupling constant of S-wave charmonia to charmed mesons.

The coupling is important for studying the decays of charmed meson molecule such as X(3872) to lower excited states of charmonia.

The Puzzle of M1 Radiative Transitions

• The M1 radiative transitions $J/\psi \rightarrow \gamma \eta_c$ and $\psi' \rightarrow \gamma \eta_c$ can be computed by using the quark model

$$\Gamma(n^3 S_1 \to \gamma m^1 S_0) = \frac{4}{3} e_c^2 \alpha \frac{|\vec{q}|^3}{m_c^2} |I_{mn}|^2$$

M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008)

- Orthonality condition $I_{nm} = \delta_{nm}$ leads to $\Gamma(J/\psi \to \gamma \eta_c) \approx 3.3 \ keV$ and $\Gamma(\psi' \to \gamma \eta_c) \approx 0$ Relativistic correction: $\Gamma(J/\psi \to \gamma \eta_c) \approx 2.4 \ keV$ $\Gamma(\psi' \to \gamma \eta_c) \approx 9.8 \ keV$
- Contradicted to experimental measurements

 $\Gamma_{\exp}(J/\psi \rightarrow \gamma \eta_c) = 1.58 \pm 0.37 \ keV \text{ and } \Gamma_{\exp}(\psi' \rightarrow \gamma \eta_c) = 0.97 \pm 0.14 \ keV$

- NLO correction is essential.
- Recent works by using pNRQCD

N. Brambilla et.al., Phys.Rev. D73 (2006) 054005 hep-ph/0512369 arXiv:1012.0773

Useful Tool to Analyze the Transitions Systematically

- Due to the small velocity of interacting charm quarks, the charmonium transitions can be treated by NRHH χ PT.
- The theory preserves approximate chiral symmetry and heavy quark spin symmetry.
- The power counting is manifested in terms of $|\vec{q}|$.
- The building blocks of EFT: charmonium multiplets charmed meson multiplets
 Goldstone bosons electromagnetic field.

Charmed Meson Loop Corrections for Hadronic Decays $\psi' \rightarrow J/\psi \pi^0(\eta)$

- Extracted quark mass ratio contradicts to LO ChPT.
- The corrections for $\psi' \rightarrow J/\psi\pi^0(\eta)$ were studied by using NRHH χ PT. (F.-K.Guo et al. Phys. Rev. Lett. 103, 08200 3 (2009) Phys. Rev. D83, 034013 (2011)
- Interaction terms for loop corrections:

$$i\frac{g_2}{2}Tr[J^{\dagger}H_a\bar{\sigma}\cdot\bar{\partial}\bar{H}_a] - \frac{g}{2}Tr[H_a^{\dagger}H_b\bar{\sigma}\cdot\bar{u}_{ab}] + H.C.$$

- Simple power counting : 1/v enhancement
- Assuming the saturation of loop diagrams.
- Fitting $\Gamma(\psi' \rightarrow J/\psi\eta) = 10 \pm 0.4 \ keV$ $\swarrow \sqrt{g_2g_2'} \approx 2 \ GeV^{-3/2}$ $\Gamma(\psi' \rightarrow J/\psi\pi^0) = 0.4 \pm 0.03 \ keV$
- Does 1/v~2 enhancement results in the dominant contribution?
- What would be numerical values of g_2 and g_2' ?

Charmed Meson Loop Corrections for M1 radiative Decays

Introduce the interaction terms:

 $\frac{\rho}{2}Tr[J\vec{B}\cdot\vec{\sigma}J^{\dagger}] + \frac{e\beta}{2}Tr[H_{a}^{\dagger}H_{b}\vec{B}\cdot\vec{\sigma}Q_{ab}] + \frac{e}{2m_{c}}Q'Tr[H_{a}^{\dagger}\vec{B}\cdot\vec{\sigma}H_{b}] + g_{2}eTr[J^{\dagger}H_{a}\vec{A}\cdot\vec{\sigma}H_{a}]$

- Two kinds of loop diagrams: $iM_{0(c)} \propto \varepsilon_{ijk} \bar{q}_i \varepsilon_j^{\gamma} \varepsilon_k^{J/\psi} \qquad iM_t \propto \varepsilon_{ijk} \bar{q}_i \varepsilon_j^{\gamma} \varepsilon_k^{J/\psi} |\bar{q}|^2 \xrightarrow{b}{(b)} \sum_{p^*} v_{p^*} \sum_{p^$
- Investigating $J/\psi(\psi') \rightarrow \gamma \eta_c$ and $\psi' \rightarrow \gamma \eta_c'$ decays.
- Both diagrams lead to 1/v enhancement from power counting.
- The contact diagrams turn out to be suppressed.

• Global fit:
$$\psi' \to J/\psi\pi^0(\eta) \implies A, g_2g_2$$

$$\begin{cases} J/\psi \to \gamma\eta_c \implies \rho \\ \psi' \to \gamma\eta_c \implies \rho' \\ \psi' \to \gamma\eta_c' \implies \rho'' \end{cases}$$

Global Fit

- We also consider the counterterm contribution in $\psi' \rightarrow J/\psi\pi^0(\eta)$ (the c.t. interaction $\frac{A}{4}(Tr[J'\sigma^i J^{\dagger}] - Tr[J^{\dagger}\sigma^i J'])\partial^i(\chi_{-})_{aa}$ for $(\chi_{-})_{aa}$ encoding the light quark masses and Goldstone bosons by Guo et al.)
- We thus have six parameters to be fitted (A, g_2 , $g_2' \rho$, ρ' , ρ'')
- First step : extract A, g_2g_2 ' from $\psi' \rightarrow J/\psi\pi^0(\eta)$
- Two branches: $g_2g_2' = 0.731 \ GeV^{-3}$

 $g_2g_2'=3.43 \ GeV^{-3}$

- Assuming the relation: $g_2 = \sqrt{m_{\psi'} / m_{J/\psi}} g_2'$
- Second step: fit $J/\psi(\psi') \rightarrow \gamma \eta_c$ and $\psi' \rightarrow \gamma \eta_c'$ decays by using the two branches to extract the counterterm couplings. (ρ , ρ' , ρ'')

Comparison with the quark model

- The set with larger product leads to considerable discrepancy with QM, which suggests a fine-tuned cancellation between the loop diagrams and counterterm interactions.
- QM suggests the equivalent couplings of counterterm $\rho = \rho$ "
- Cannot be satisfied by using the g_2 and g_2 extracted from the hadronic decays.

	$A' (GeV^{-2})$	$g_2 (GeV^{-3/2})$	$g'_2 \; (GeV^{-3/2})$	$\rho (GeV^{-1})$	$\rho^{\prime\prime}~(GeV^{-1})$	$\rho' (GeV^{-1})$
.43 GeV ⁻³	$-0.163\substack{+0.001\\-0.001}$	$1.93\substack{+0.03 \\ -0.03}$	$1.77\substack{+0.03 \\ -0.03}$	$2.21^{-0.03}_{+0.02}$	$0.944^{-0.09}_{+0.09}$	$1.82^{-0.0002}_{+0.0016}$
	$-0.163\substack{+0.001\\-0.001}$	$1.93\substack{+0.03 \\ -0.03}$	$1.77\substack{+0.03 \\ -0.03}$	$2.61\substack{+0.03 \\ -0.02}$	$1.43\substack{+0.09\\-0.09}$	$1.84\substack{+0.013\\-0.091}$
731 GeV^{-3}	$0.652\substack{+0.016\\-0.018}$	$0.893\substack{+0.031\\-0.034}$	$0.819\substack{+0.028\\-0.031}$	$0.312\substack{+0.0227\\+0.0246}$	$0.042^{-0.0900}_{+0.0904}$	$0.379^{-0.0004}_{+0.090}$
	$0.652\substack{+0.016\\-0.016}$	$0.893\substack{+0.031\\-0.034}$	$0.819\substack{+0.028\\-0.031}$	$0.720\substack{+0.023\\-0.024}$	$0.476\substack{+0.09\\-0.09}$	$0.406\substack{+0.0008\\-0.001}$
QM [0.275	0.263	0.0417

$$g_2g_2'=3.43 \ GeV^{-3}$$

$$g_2g_2' = 0.731 \ GeV^{-3}$$

Comparing loop contributions with experimental measurements

- We investigate the contributions from triangle loop diagrams of different sets for $J/\psi \rightarrow \gamma \eta_c$ and $\psi' \rightarrow \gamma \eta_c'$ decays.
- $g_2g_2' = 3.43 \ GeV^{-3}$ \implies fine-tuned cancellation
- $g_2g_2' = 0.731 \ GeV^{-3}$ \longrightarrow close to counterterm contribution

$g_2 = 1.93^{+0.03}_{-0.03}$ $g_2 = 0.893^{+0.031}_{-0.034}$								
	$G_2 = 3.43^{+0.10}_{-0.11} \; (\text{GeV}^{-3})$	$G_2 = 0.731^{+0.031}_{-0.034} (\text{GeV}^{-3})$	QM	PDG and BES III				
$\Gamma(J/\psi \to \gamma \eta_c)_{Tri}$	$222^{+14}_{-14} \text{ keV}$	$10.2^{+1.5}_{-1.5} \text{ keV}$	$2.9 \ \mathrm{keV}$	$1.58{\pm}~0.37~{\rm keV}$				
$\Gamma(\psi' \to \gamma \eta_c')_{Tri}$	$4.5^{+0.3}_{-0.3}~{\rm keV}$	$0.20^{+0.03}_{-0.03} \rm ~keV$	0.21 keV	$0.143{\pm}~0.027{\pm}0.092~{\rm keV}$				

Summary

- We have analyzed the effect of hadronic loop correction for the radiative M1 transition between S-wave charmonia.
- By incorporating the counterterm interaction in hadronic decays, we extract two sets of coupling constants ^g₂ and ^g₂'.
- These couplings are important for analyzing other chamonium transitions.
- To avoid the fine-tuning problem for radiative decays, the loop corrections should only lead to sizable effect.
- However, the hadronic decays and radiative decays cannot be well fitted simultaneously, which may suggest the power counting in terms of v is unreliable.

Thank you!

Backup Slices

Kinetic terms in the Lagrangian:

$$L = Tr[H_a^{\dagger}(iD_0 + \frac{D^2}{2m_D})H_a] + \frac{\Delta}{4}Tr[H_a^{\dagger}\vec{\sigma}_i H_a\vec{\sigma}_i]$$

charmed meson multiplet: $H_a = V_a \cdot \vec{\sigma} + P_a$

charmonium multiplet: $J = \vec{\sigma} \cdot \vec{\psi} + \eta_c$

 $SU(3)_L \times SU(3)_R : H_a \to H_b U_{ba}^{\dagger}$ Heavy quark spin sym: $H_a \to SH_a$

Power Counting

- We approximate the intermediate momenta as $\vec{l} = mv$ and $l_0 = mv^2$. The determediate momenta is $\vec{l} = mv$ and $l_0 = mv^2$.
- The Integral for loop diagram:

$$i\mathcal{M}_{a} = -2ig_{2}^{2}(\lambda_{1(3)}) \int \frac{d^{4}l}{(2\pi)^{4}} \frac{\epsilon_{\mu\nu\rho}\vec{q}_{\mu}\epsilon_{\nu}^{\gamma}(2\vec{l}-\vec{q})_{\rho}\epsilon^{J/\psi}\cdot\vec{l}}{8(l_{0}-\frac{\vec{l}^{2}}{2m_{D}}+i\epsilon)(l_{0}+\frac{\vec{l}^{2}}{2m_{D}}+b_{DD}-i\epsilon)(l_{0}-q_{0}-\frac{(\vec{l}-\vec{q})^{2}}{2m_{D^{*}}}-\Delta+i\epsilon)}$$

- The cancellation between loop diagrams is proportional to the charmed meson mass difference $\propto \Delta = m_{D*} m_D$.
- charmed meson mass difference $\propto \Delta = m_{D^*} m_D$. The full decay amplitude $\left[\propto \frac{v \Delta}{mv^2} = \frac{\Delta}{mv} \right]$, where the mv^2 in the denominator is the intrinsic energy scale to balance the dimension.