2023 Sterile Neutrino Decay at Borexino | 1/14

Sterile Neutrino Decay at Borexino

Yulun Li

CNP Day Presentation Virginia Tech Created and presented by: Yulun Li

December 8, 2023

Outline

- What would happen if you have a MeV scale neutral heavy lepton that couples to the weak interaction?
- Current experimental limit for such decay.
- Closed-form kinematics calculation.
- How does this contribute to observable events (Borexino)?

1

Heavy Sterile Neutrino (MeV) Decay

Different channels that the heavy sterile neutrino can decay to up to the order of 1-loop(Bellini et al. 2013)¹: $\nu_H \rightarrow \nu_e + \gamma$, $\nu_H \rightarrow \nu_e + e^- + e^+$, and $\nu_H \rightarrow \nu_e \nu_i \tilde{\nu}_i$ (Invisible)

Bellini et al. (2013). "New limits on heavy sterile neutrino mixing in 8B decay obtained with the Borexino detector"

The Relevant Channels for Our Detection on Earth

Experiment Limit

Current and future limits in mass-mixing parameter space.

Interference Between Charged Current (CC) Channel and Neutral Current (NC) Channel

• Since the product is $\nu_e + e^- + e^+$, the contribution is from the interference of the CC and NC channels.

This is a comparison between the CC channel, NC channel, their interfered channel (in shade), and their incoherently summed channel (dashed).

Closed Form Calculation

• Using Fierz Transformation,

$$\mathcal{H}_{CC} = \frac{G_F}{\sqrt{2}} [\overline{u}_e \gamma_\mu (1 - \gamma_5) u_{\nu_H}] [\overline{u}_{\nu_e} \gamma^\mu (1 - \gamma_5) v_e]$$

$$\downarrow$$

$$\mathcal{H}_{CC} = \frac{G_F}{\sqrt{2}} [\overline{u}_{\nu_e} \gamma_\mu (1 - \gamma_5) u_{\nu_H}] [\overline{u}_e \gamma^\mu (1 - \gamma_5) v_e]$$

• Then the combined Hamiltonian should be $\mathcal{H} = \frac{G_F}{\sqrt{2}} [\bar{u}_{\nu_e} \gamma_\mu (1 - \gamma_5) u_{\nu_H}] \{ \bar{u}_e \gamma^\mu [(g_V + 1) - (g_A + 1)\gamma_5] v_e \}$

Expected Decay Width

$$\begin{split} \Gamma_0 &= \frac{G_F^2 m_{\nu_H}^5}{192\pi^3}, \qquad \frac{d^2 \Gamma}{dl^0 d \cos \theta} = \Gamma_0 |U_{s1}|^2 \frac{d^2 \overline{\Gamma}}{dl^0 d \cos \theta} \\ &\frac{d^2 \overline{\Gamma}}{dl^0 d \cos \theta} = 2(1-Q^2)^2 \sqrt{1-\frac{4m_e^2}{Q^2}} \frac{1}{Q^2} \Big\{ & \left[X^1 \Big(Q^2 + 2Q^4 - 2m_e^2(Q^2-1) \Big) - 6ZQ^2 m_e^2 \right] \\ &- |\vec{s}| \cos \theta \Big[X \Big(Q^2 - 2Q^4 + 2m^2(1+Q^2) \Big) + 6ZQ^2 m_e^2 \Big] \Big\} \end{split}$$

$${ }^{1}_{X} = [(g_{V}+1)^{2} + (g_{A}+1)^{2}], \, Y = [(g_{V}+1)(g_{A}+1)], \, \text{and} \, \, Z = [(g_{V}+1)^{2} - (g_{A}+1)^{2}]. \,$$

Are the Current Experiments Sensitive to Such Event?

We can start by analyzing Borexino's bounds on this process.

Sun-Borexino

Borexino

- Detects solar neutrinos by scattering them with electrons
- 278 tons of purified organic liquid scintillator (C_9H_{12})
- Selects 100 tons fiducial volume to suppress external radiation background
- Energy of an event is quantified by photo-multipliers with a resolution of $5\%/\sqrt{E[{\rm MeV}]}$

Discrepancies

Solid lines are from our closed-form calculation; dash lines are Borexino's plot (Bellini et al. 2013)

Re-analyze Borexino

This has a light more sensitivity due to our different event spectra.

Summary and the future work

- There is no clear evidence for such a sterile neutrino.
- Due to possible reasons, Borexino may have underestimated the sensitivity of sterile neutrino decay.
- I will be working on evaluating the experimental bounds on reactor neutrinos (IsoDAR@Yemilab)

References I

Bellini, G. et al. (2013). "New limits on heavy sterile neutrino mixing in B8 decay obtained with the Borexino detector". In: *Phys. Rev. D* 88.7, p. 072010. DOI: 10.1103/PhysRevD.88.072010. arXiv: 1311.5347 [hep-ex].