

Latest Results from CUORE

CUORE

Vivek Sharma 12/08/2023 CNP Research Day

Standard model 2nd order weak transition, extremely rare (half-life of 10¹⁹-10²² yr) Observable when beta decay is kinematically forbidden

 $(A,Z)
ightarrow (A,Z+2) + 2e^- + 2 ar{
u}_e$

2v DOUBLE BETA DECAY

12/08/2023

CNP Research Day

NEUTRINOLESS DOUBLE BETA DECAY

CUORE

- Beyond Standard Model phenomenon, can occur if neutrinos are Majorana particles
- Lepton number violating process
- Potentially impact understanding of origins of matter/anti-matter asymmetry
- Constrains neutrino mass hierarchy, scale (model dependent)

 $(A,Z)
ightarrow (A,Z+2) + 2e^-$

Light neutrino exchange model

NEUTRINOLESS DOUBLE BETA DECAY

 $m_{\beta\beta} \; (\mathrm{meV})$

- Experimental observable is decay rate
 - Depends on effective Majorana mass (m_{ββ})
 - Directly related to absolute neutrino mass scale
- Additional dependency on various nuclear and atomic effects.
- Limit on (m_{ββ}) can help rule out Inverted Hierarchy (model dependent)

CNP Research Day

DETECTION CHALLENGES

- 0vββ signal is the summed electron energy at Q-value
 - **Exceptional resolution** essential to differentiate between the $0\nu\beta\beta$ and $2\nu\beta\beta$ spectra
 - **High Q-value** for practically observable half-life and avoiding gamma-ray backgrounds
- Low background required for a detectable signal, going underground is necessary to avoid cosmic ray bkg
- Exposure needs to be maximized
 - Large detector mass
 - Efficient duty cycle to lengthen livetime
- Choice of isotope should be compatible with detector technique

- Cryogenic Underground Observatory for Rare Events
- Located at Hall A of Gran Sasso National Laboratory
- 3600 m.w.e of overburden, muon rate 6 orders of magnitude less than surface, extensive shielding
- ¹³⁰Te has a $\beta\beta$ Q-value of 2527.5 keV
- 742 kg TeO₂, 206 kg ¹³⁰Te (34% natural abundance)

Images courtesy of LNGS: <u>https://www.lngs.infn.it/en</u>

DETECTOR INFRASTRUCTURE

CUORE

- 988 natural TeO₂ crystals
 - Total mass: 742 kg
 - ¹³⁰Te mass: 206 kg
 - 5x5x5 cm³, arranged in 19 towers
- Housed in copper frame and held in place by PTFE spacers
 - Copper linked to thermal bath
 - PTFE spacers are also weak thermal links and contract more at low temperatures
- Tightly spaced crystals allow for coincidences to be exploited for background reduction

DETECTION PRINCIPLE

CUORE

- 988 TeO₂ crystals operated as bolometers; energy deposited is registered as temperature change
 - Read out by a NTD (Neutron Transmutation Doped) Ge thermometer
- Signal strength and detector resolution depend strongly on temperature (Debye's Law)
 - C ∝ T³
 - Detector operated at ~11 mK
- In CUORE, we observe an average resolution of ~8 keV FWHM at 2615 keV⁺

⁺CUORF collaboration

DETECTION PRINCIPLE

- 988 TeO₂ crystals operated as bolometers; energy deposited is registered as temperature change
 - Read out by a NTD (Neutron Transmutation Doped) Ge thermometer
- Signal strength and detector resolution depend strongly on temperature (Debye's Law)
 - C ∝ T³
 - Detector operated at ~15 mK
- In CUORE, we observe an average resolution of ~8 keV FWHM at 2615 keV⁺

Example of a signal pulse

9

CRYOGENICS

- Pre-cooling performed by pulse tube cryocoolers
- Multistage design shields from thermal radiation
- Cooling power of ~5 μW at 15 mK
 - Experimental volume of 1 m³ and payload of 1.5 tonne
 - Demonstrated stability over years of data taking

fluctuation over time*

https://www.nature.com/articles/s41586-022-04497-4.pdf

12/08/2023

SHIELDING

- Experimental setup shielded from radiation by multiple layers
- Neutron background:
 - Lateral 18 cm polyethylene layer with 2 cm thick H₃BO₃ panels
 - 20 cm thick borated polyethylene at the bottom
- Gamma background:
 - 30 cm lead shield above the detector volume
 - 6 cm thick lead (²¹⁰Pb free) on the side and below the detector volume

- Experimental setup shielded from radiation by multiple layers
- Neutron background:
 - Lateral 18 cm polyethylene layer with 2 cm thick H₃BO₃ panels
 - 20 cm thick borated polyethylene at the bottom
- Gamma background:
 - 30 cm lead shield above the detector volume
 - 6 cm thick lead (²¹⁰Pb free) on the side and below the detector volume

Image credit: Il Nuovo Saggiatore/Società Italiana di Fisica di Bologna and INFN.

CUORE DATA TAKING

- Data taking began in 2017
 - Software and hardware optimizations since have improved stability of data taking
- Steady data taking since 2019 with 90% uptime
- Smooth transition to remote detector monitoring after pandemic lockdown
- Ονββ results for 1038 kg.yr exposure reported in Nature*

1-sigma sensitivity

Active Mass: 742 kg TeO₂
 Isotopic abundance: 34%, 206 kg ¹³⁰Te

CUORE: SUMMARY

1-sigma sensitivity

Greater than 90% duty cycle

Cryogen-free cryostat (No regular downtime for invasive cryogenic maintenance)

$$T_{1/2}^{0
u}(1\sigma)=ln(2)rac{a\epsilon N_A\eta}{W}\sqrt{rac{mt}{b\Delta E}}$$
1-sigma sensitivity Bkg rate

- Radiopurity controls on materials and assembly
 - 3600 m.w.e overburden
 - Extensive shielding
 - BI: 10⁻² counts keV⁻¹ kg⁻¹ yr⁻¹

 $T_{1/2}^{0
u}(1\sigma)=ln(2)rac{a\epsilon N_A\eta}{W}\sqrt{rac{mt}{b\Delta E_{\chi}}}$ 1-sigma sensitivity Energy Resolution

- Crystals operated at 15 mK
 - Denoising techniques
- Q_{ββ} relative energy resolution: 0.3%

$$T_{1/2}^{0
u}(1\sigma)=ln(2)rac{a\epsilon N_A\eta}{W}\sqrt{rac{mt}{b\Delta E}}$$
1-sigma sensitivity Efficiency

- Source = Detector
- Closely packed array of channels
 - 88% containment efficiency
 - 96% data quality cut efficiency

- Denoising
 - Multivariate noise cancelling algorithm to improve detector performance*
 - Uses data from auxiliary devices: Microphones, accelerometers, seismometers

CNP Research Day

DATA PROCESSING - TRIGGER

Optimum

Trigger

Amplitude

Evaluation

Thermal Gain

Stabilization

Energy

Calibration

Optimum Trigger

Denoising

Raw

Voltage

Data

- Matched filter to maximize signal to noise
- Adjusts for baseline drifts and noise
- Lowers energy detection thresholds

Pulse Shape

Analysis

rocessed

Data

- Amplitude Evaluation
 - Using Optimum waveform filter to estimate amplitude of pulses
 - Transfer function of each channel evaluated using average pulse and average noise power spectrum

Si

Heater

H

DATA PROCESSING

CNP Research Day

- **Gain Stabilization**
 - Eliminating gain dependence • on temperature using periodically injected pulses

Stabilized Amplitude = $5000 \times$

-5000

Baseline (mV)

CUORE

5050 (:n[.]e) 5040

5030

5020

5010

5000

4990

4980

4970

4960

4950

StabAmplitude

Amplitude

Amplitude

StabPulser Amplitude

Stab. Amplitude

Ο

Ο

Voltage Denoising Trigger

DATA PROCESSING

Calibration

Raw

 First 3 datasets used internal ²³²Th source

Optimum

- Later datasets calibrated with external ²³²Th-⁶⁰Co source
- Iterative calibration algorithm
 - Iterative seeding for crystal ball fits
 - Decision between gaussian and crystal ball fits based on various fit quality metrics
 - Tools to monitor fit quality

23

2000

232-Th internal calibration (dataset 2)

1000

232Th-60Co external calibration (dataset 14)

1500

Energy

Calibration

208**T**

2500

Energy (keV)

rocessed

Data

Pulse Shape

Analysis

 10^{2}

500

Amplitude

Evaluation

Thermal Gain

Stabilization

- Calibration
 - First 3 datasets used internal ²³²Th source
 - Later datasets calibrated with external ²³²Th-⁶⁰Co source
 - Iterative calibration algorithm
 - Iterative seeding for crystal ball fits
 - Decision between gaussian and crystal ball fits based on various fit quality metrics
 - Tools to monitor fit quality

511.00 keV, 925 events, χ^2 /dof = 24.14, σ = 4.00

<u>A calibration peak fit with default seeds (left), and</u> <u>fit with iterative algorithm (right)</u>

511.00 keV, 356 events, χ^2 /dof = 0.79, σ = 3.01

- Calibration
 - First 3 datasets used internal ²³²Th source
 - Later datasets calibrated with external ²³²Th-⁶⁰Co source
 - Iterative calibration algorithm
 - Iterative seeding for crystal ball fits
 - Decision between gaussian and crystal ball fits based on various fit quality metrics
 - Tools to monitor fit quality

25

- Pulse Shape Discrimination
 - Using PCA (Principal Component Analysis) to eliminate pulses with a non-physical shape
 - Extract salient features of pulses to calculate reconstruction error for pulse shape discrimination

2 TONNE-YR SPECTRUM

- Blinded analysis to prevent bias
 - ROI (2465, 2575) keV salted with ²⁰⁸TI 2615 keV peak
 - Fit ROI events with: ¹³⁰Te 0vββ peak, ⁶⁰Co peak, linear background
 - Finalize model parameters before unblinding

88% of $0\nu\beta\beta$ events occur in a single crystal

CUORE DETECTOR RESPONSE

- Fit 2615 keV calibration peak for each channel
 - 3-Gaussian signal peak + background structures •

 $\Delta E_{2615 keV} = 7.43 ~\pm ~ 0.37 ~{
m keV}$

- Scale detector response from 2615 keV calibration fit to peaks in physics data
 - Calculate resolution scaling and reconstruction bias at • $Q_{\beta\beta}$

$$\Delta E_{Q_{\beta\beta}} = 7.26^{+0.43}_{-0.47} \text{ keV}$$

$$\Delta E_{bias} = -0.11^{+0.19}_{-0.25} \text{ keV}$$

$$\Delta E_{bias} = -0.11^{+0.19}_{-0.25} \text{ keV}$$

1.4

2500

Energy (keV)

2000

3000

2nd Ton Year Results

- Fit in ROI in BAT (Bayesian Analysis Toolkit) including systematics
 - Average background index: 1.3×10^{-2} counts/(keV.kg.year)
 - Decay Rate limit: $\Gamma_{0v} < 2.5 \times 10^{-26} \, yr^{-1}$ (90% C.I.)
 - Half-life limit: $T_{1/2} > 2.7 \times 10^{25}$ yr (90% C.I.)
- Median exclusion sensitivity: 3.1×10^{25} yr (90% C.I.) with MC 10⁴ experiments

No evidence of neutrinoless double beta decay

Combined Results

- Combining 2nd ton.yr results with 1 ton.yr results
 - Analyzed exposure: 2023 kg.yr
 - Half-life limit: $T_{1/2} > 3.3 \times 10^{25}$ yr (90% C.I.)
- m _{ββ} < 75 255 meV</p>
 - Light Majorana neutrino exchange model
 - Range depends on nuclear matrix elements

Limits on other isotopes:

GERDA Collaboration, Phys. Rev. Lett. 125, 252502 (2020) https://doi.org/10.1103/PhysRevLett.125.252502 CUPID-Mo Collaboration https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.181802 CUPID-0 Collaboration, Phys. Rev. Lett. 123, 032501 (2019) https://doi.org/10.1103/PhysRevLett.123.032501 KamLAND-Zen Collaboration, Phys. Rev. Lett. 117, 082503 (2016) https://doi.org/10.1103/PhysRevLett.117.082503

Oscillation parameters:

Esteban, I. et al., J. High En. Phys. 2020 (178) https://doi.org/10.1007/JHEP09(2020)178

SUMMARY

- CUORE has achieved 2 tonne year of exposure and continues stable data taking
- No evidence of 0vββ decay with 2023 kg.yr of data
 - Half-life limit: $T_{1/2} > 3.3 \times 10^{25}$ yr (90% C.I.)
 - Effective Majorana mass upper limit: 75-255 meV
- Other avenues of research:
 - Dark matter
 - Fractionally charged particles
 - Baryon number violation

12/08/2023

THANK YOU!

EXTRA SLIDES

Baryon Number Conservation

- Conservation of baryon number is not guaranteed by any fundamental symmetry
 - Proposed to explain the stability of matter
- Violation of baryon number conservation essential to explain matter anti-matter asymmetry (Sakharov Conditions)
- Nucleon decay modes and neutron-antineutron oscillation are two promising ways search for baryon number violation
- This work concerns tri-nucleon decay, with $\Delta B = -3$

Violation of *CP* invariance, *C* asymmetry, and baryon asymmetry of the universe A. D. Sakharov (Submitted 23 September 1966) Pis'ma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967) [JETP Lett. 5, 24–27 (1967). Also S7, pp. 85–88] Usp. Fiz. Nauk 161, 61–64 (May 1991)

> My zaparenta C. Okyso nou bostonoù mennepagyee ger Becuennoù cuniza uniza no ee kontoù apunype

Literal translation: Out of S. Okubo's effect At high temperature A fur coat is severed for the Universe Shaped for its crooked figure.

https://www.symmetrymagazine.org/article/october-2005/explain-it-in-60-seconds CP Violation

$$ppp
ightarrow e^+ \pi^+ \pi^+$$

$$ppn
ightarrow e^+ \pi^+ \qquad \Delta B = -3$$

$$pnn
ightarrow e^+ \pi^0$$

*K.S. Babu et al. https://arxiv.org/abs/1311.5285v1

12/11/2023

CNP Research Day

Theoretical Motivation

- Model proposed by K.S. Babu* utilizes anomaly free Z₆ discrete symmetry in the SM lagrangian as gauged baryon parity with the inclusion of right-handed neutrinos
- The Z₆ symmetry has a natural embedding in the following U(1) gauge symmetry:

$$I_R^3 + L_i + L_j - 2L_k$$

 $I_R^3=Y-(B-L)/2$

 $L_i: i^{th} ext{ family lepton number}, i
eq j
eq k$

- Forbids $\Delta B=1$ and $\Delta B=2$ nucleon decay processes
- ΔB=3 allowed with d=15 operators
- Double nucleon decay rates calculated within this framework and found to be consistent with other evaluations

Tri-proton decay in CUORE

- CUORE
- Tri-proton decay in ¹³⁰Te produces ¹²⁷In, and charged particles carrying 2.7 GeV
- One can search for this process in two ways:
 - Direct search: Look for decay energy deposited in the detector
 - Indirect search: Look for decay signatures of ¹²⁷In
- Indirect search previously implemented by MAJORANA collaboration¹ and EXO-200²

$$ppp \rightarrow e^{+}\pi^{+}\pi^{+}$$

$$^{130}\text{Te} \rightarrow ~^{127}\text{In} + e^{+} + \pi^{+} + \pi^{+}$$

$$^{2.7 \text{ GeV}}$$

1 https://journals.aps.org/prd/pdf/10.1103/PhysRevD.99.072004 2 https://journals.aps.org/prd/pdf/10.1103/PhysRevD.97.072007

Methodology

¹²⁷In

¹²⁷Sn*

- Direct search looks for energy deposition in multiple crystals throughout the detector
 - CNN based analysis to classify these with muon events as background
- Indirect search looks for decay signatures of daughter nuclei at the origin of the tri-proton decay

Direct Search

- PPP decay events characterized by diffuse showers
 - High multiplicity, high energy events
- Muon events show tracks with relatively lower multiplicity secondary events
- Potential to discriminate between events based on energy distribution and event topology
- Convolutional Neural Network good candidate for classification algorithm
 - Excellent at extracting spatial information with translational invariance

Convolutional Neural Networks

- Artificial neural networks commonly used to classify visual data
- Involves convolution of the input array with filters to abstract distinguishing features
 - Elements of filters are trainable parameters
- Commonly followed by fully connected neural network to perform classification
- Commonly used layers
 - Convolution: Generating feature maps
 - Pooling: Downsampling feature maps, introduces translational invariance, increase receptive field

https://nafizshahriar.medium.com/what-is-convolutional-neural-network-cnn-deep-learning b3921bdd82d5

Convolutional Neural Networks

- Artificial neural networks commonly used to classify visual data
- Involves convolution of the input array with filters to abstract distinguishing features
 - Elements of filters are trainable parameters
- Commonly followed by fully connected neural network to perform classification
- Commonly used layers
 - Convolution: Generating feature maps
 - Pooling: Downsampling feature maps, introduces translational invariance, increase receptive field

Training data

- Simulated ppp decays and muon events in CUORE geometry
 - Randomly split 2.7 GeV among the decay products
 - Processed events with CUORE detector response
- Mapped events to 3D arrays (10x10x13)
- Pre-processing
 - Energies capped to 12 MeV to simulate saturation
 - Individual energy threshold: 350 keV
 - Events with number of depositions > 10
 - Energies scaled to [0,1] range to facilitate efficient backpropagation
 - Accounted for data quality cuts (~96% efficiency)

CNN Implementation

- 2 blocks of Conv3D + MaxPool3D
 - 1st block: 16 filters, kernel size: 3x3x3
 - 2nd block: 32 filters, kernel size: 3x3x3
 - MaxPool kernel size: 2x2x2
- 2 layers of FC layers
 - Dropout: 0.3
 - ReLU activation
- Output Layer: Sigmoid
- Loss function: Binary cross entropy
- Optimizer: Adam
- Early stopping, validation accuracy as monitor

Layer (type)	Output Shape	Param #		
input_1 (InputLayer)	[(None, 10, 10, 13, 1)]	0		
conv3d (Conv3D)	(None, 10, 10, 13, 16)	448		
conv3d_1 (Conv3D)	(None, 10, 10, 13, 16)	6928		
max_pooling3d (MaxPooling3D)	(None, 5, 5, 6, 16)	0		
conv3d_2 (Conv3D)	(None, 5, 5, 6, 32)	13856		
conv3d_3 (Conv3D)	(None, 5, 5, 6, 32)	27680		
max_pooling3d_1 (MaxPooling 3D)	(None, 2, 2, 3, 32)	0		
global_average_pooling3d (G lobalAveragePooling3D)	(None, 32)	0		
dense (Dense)	(None, 32)	1056		
dropout (Dropout)	(None, 32)	0		
dense_1 (Dense)	(None, 16)	528		
dense_2 (Dense)	(None, 1)	17		
 Total params: 50,513 Trainable params: 50,513				

Non-trainable params: 0

CNN Performance

CNP Research Day

Stratified Kfold Cross Validation

- Splits the dataset into k subsets, or folds, while maintaining the same proportion of classes in each fold as the original dataset.
- Each fold serves as a validation set while the remaining k-1 folds are used for training.
 - This process is repeated k times, allowing every data point to be part of the validation set exactly once.
- Final evaluation is an average of the results obtained from all k folds, helping to detect potential overfitting.
- Robust technique for evaluating the performance of machine learning models.
 - Ensures an unbiased assessment, avoids over-optimistic estimates

Stratified Kfold Cross Validation

- Splits the dataset into k subsets, or folds, while maintaining the same proportion of classes in each fold as the original dataset.
- Each fold serves as a validation set while the remaining k-1 folds are used for training.
 - This process is repeated k times, allowing every data point to be part of the validation set exactly once.
- Final evaluation is an average of the results obtained from all k folds, helping to detect potential overfitting.
- Robust technique for evaluating the performance of machine learning models.
 - Ensures an unbiased assessment, avoids over-optimistic estimates

Error Analysis

CNN Uncertainty estimation

- Monte Carlo dropout
 - Employ dropout for both training and inference
 - Generate distribution of accuracies
- Bootstrap aggregation and boosting
 - Extension of kfold cross validation
 - Average performance of multiple independent

https://arxiv.org/abs/2107.03342

Delayed Signal

- Simulated 10^{6 127}In nuclei in a Geant4-based CUORE geometry and detector response simulation
- Tagged ¹²⁷In-¹²⁷Sb coincidences:
 - Tag M2 events with a tight cut to only account for gamma peaks

• Prompt-Delayed energy and time distribution consistent with literature input

Delayed Time - Prompt Time

Integration with delayed signal

- Once candidate ppp decays are tagged, important to identify decay origin to minimize background
 - High multiplicity -> More channels to search
 -> Higher background
- Model can help narrow down candidate origin channels for 127In decay tagging
 - Pixel(Crystal) level classification
 - Currently testing UNet-like architectures to perform semantic segmentation
 - Classification with discrete labels
 - Regression with Gaussian scoring

http://dx.doi.org/10.1007/978-3-319-24574-4 28

Roadmap

- Currently developing Bayesian framework to calculate MC limit with preliminary systematics on muon rate and CNN classification accuracies
- Final round of CNN tuning
 - Larger training dataset
 - Training data augmentation by rotations of muon and ppp events about the vertical axis
 - Developed tools to perform error analysis more efficiently
 - Hidden layer analysis
- Testing segmentation models to control delayed coincidence backgrounds
- Investigating systematics
 - MC physics list
 - Data event extraction
 - Muon rate

^{12/08/2023} 127In decay chain

- ¹²⁷In is a short-lived nuclei ($t_{1/2}$ = 1.1 s)
- Decays to an excited state of ¹²⁷Sn which decays to ¹²⁷Sb via two decay pathways
 - One of them involves a metastable state which decays with a half-life of 4.1 m
- The metastable route is well suited for a delayed coincidence search
 - Half-life short enough to control accidental backgrounds, and long enough to work with CUORE timing resolution

Delayed coincidence search

- Probability of occupying metastable state 81% as calculated in a Geant4 simulation
- The primary signal for this search would be a time coincidence between the prompt and delayed events with energy cuts

¹²⁷Sn*

Energy cut 1

 β^{-}

¹²⁷In

 $^{-}~6510~{
m keV}~77\%$

 $t_{1/2} = 1.09 \ {
m s}$

Energy cut 2

^{127m}Sn

Time cut: n x $t_{1/2}$

 $\gamma 1597.43 \text{ keV} (64\%)$

Signal Efficiency in CUORE

- Simulated 10^{6 127}In nuclei in a Geant4-based CUORE geometry and detector response simulation
- Tagged ¹²⁷In-¹²⁷Sb coincidences in two ways:
 - Narrow cut approach: Tag M2 events with a tight cut to only account for gamma peaks
 - Broad cut approach: Tag M2 events for prompt and delayed events with cuts accounting for both gamma and beta decays

Signal Efficiency in CUORE

- Simulated 10^{6 127}In nuclei in a Geant4-based CUORE geometry and detector response simulation
- Tagged ¹²⁷In-¹²⁷Sb coincidences in two ways:
 - Narrow cut approach: Tag M2 events with a tight cut to only account for gamma peaks
 - Broad cut approach: Tag M2 events for prompt and delayed events with cuts accounting for both gamma and beta decays

CNP Research Day

Signal Efficiency in CUORE (Narrow cut)

- Tagged 2% of ¹²⁷In primaries (10⁶) in CUORE geometry
- Sanity Checks:
 - Prompt-Delayed energy and time distribution consistent with literature input

Delayed Time - Prompt Time

Signal Efficiency in CUORE (Broad cut)

- Tagging efficiency increases significantly (18%), but backgrounds increase as well
- This approach lets us leverage prompt/delayed energy distributions for a likelihood analysis to optimize sensitivity

Background Estimates

- Removing tags associated with known decays significantly reduces background
 - Negligible effect on signal efficiency (2%)
- Currently investigating distribution of these tags to better understand background

Background type	Narrow cut	Broad Cut	Broad cut (with additional cuts)	Broad cut reduction
238U-Bulk	22	13381	4018	70%
232Th-Bulk	0	22985	3568	85%
238U-Surface	39	4623267	237043	95%
232Th-Surface	0	716266	254029	65%

Background Estimates

- Potential backgrounds comprise of:
 - Accidental coincidences
 - Coincidences correlated in time from major background sources
- Uncorrelated background can be estimated from the CUORE background model*
 - Probability of coincidence calculated assuming prompt and delayed events are independent
 - With an exposure of 1038.4 kg.yr:
 - Narrow cut accidental bkg events: 55
 - Broad cut accidental bkg events: 56 x 10³

Background Estimates

- CUORE
- Correlated backgrounds are estimated by tagging on background model output with same energy and time cuts

DOUBLE BETA DECAY RESULTS

- Double beta decay simulated in Geant4 with CUORE geometry and detector response
- Spectrum reconstructed by simultaneous fit of data with 62 MC simulated sources (2vββ + surface and bulk contaminations + muons)
 - MCMC Bayesian approach
 - Uniform prior for sources except muons
- For 900-2000 keV, more than 50% counts are 2vββ events

HPGe Work

BACKGROUND BUDGET

TeO₂: natural radioactivity CuNOSV: natural radioactivity CuNOSV: cosmogenic activation *TeO*₂: cosmogenic activation CuOFE: natural radioactivity RomanPb: natural radioactivity ModernPb: natural radioactivity SI: natural radioactivity Rods and 300KFlan: natural radioactivity Environmental µ Environmental n Environmental y 1E-06

*CUORE collaboration https://doi.org/10.1140/epjc/s10052-017-5080-6

DETECTOR RESPONSE

- Fit 2615 keV calibration peak for each channel
 - 3-Gaussian signal peak
 - Compton background
 - Flat background
 - 30 keV X-ray escape peak
 - 30 keV X-ray sum peak
- Scale detector response from 2615 keV calibration fit to peaks in physics data

BACKGROUND IN ROI

- Alpha region:
 - Flat background in [2650, 3100] keV
 - 1.40(2) x 10⁻² counts/(keV kg yr)*
- $Q_{\beta\beta}$ region
 - Flat background + ⁶⁰Co peak in [2490, 2575] keV
 - 1.49(4) x 10⁻² counts/(keV kg yr)*
- Background dominated by degraded alpha energy depositions (90%)

CUORE UPGRADE WITH PARTICLE IDENTIFICATION

- Next generation $0\nu\beta\beta$ decay search.
 - Scintillating bolometer technology.
 - Extremely good energy resolution, flexible choice of isotope.
- CUPID builds on CUORE, the largest bolometric array ever built.
 - Established and well understood infrastructure and environment.
 - CUORE has demonstrated stable and reliable operation over multiple years of ٠ exposure.
- Particle identification with scintillating Li₂MoO₄ bolometers has been demonstrated in the CUPID-Mo pilot experiment.*
 - Isotopic enrichment and crystals growth has been demonstrated and can be done at scale.*
- Background index goal of $<10^{-4}$ counts/(keV·kg·yr).
 - Data driven based on CUORE, CUPID-0, and CUPID-Mo experiments.*
- Probe the full Inverted Hierarchy region down to $m_{\beta\beta}$ <12 meV (3 σ , favorable NME).
 - Using only 240 kg of ¹⁰⁰Mo.
- Next-next generation CUPID-1T capable of probing into Normal Hierarchy, or multiple isotope precision measurements in Inverted Hierarchy.

*https://cupid.lngs.infn.it/doku.php?id=cupid pub:start, arXiv:1907.09376

Will operate in the same cryostat that

CNP Research Day

CUORE UPGRADE WITH PARTICLE IDENTIFICATION

 currently houses CUORE
 Goal: Fully probe the "Inverted Hierarchy" region. Improve sensitivity to m_{ββ} by factor of ~5 relative to CUORE

Improved Sensitivity from Background Reduction

Particle identification

- Muon veto
- Increased Q value for reduced γ/β backgrounds

CUPID Technology

- $Q_{\beta\beta}$ = 2527 keV < 2615 keV peak
- Measure only heat
- No particle ID

- $Q_{\beta\beta}$ = 3034 keV: Most β/γ backgrounds reduced
- Measure both heat + light
- Particle ID to actively discriminate α particles