An Overview of MOLLER Experiment at Jefferson Lab and VT Responsibilities

VT workforce: Mark Pitt Devi Adhikari Andrew Gunsch Daniel Valmassei Devi L. Adhikari – Dec 08, 2023

Virginia Tech

CNP Research Day

Outline

2

- Parity-violating electron scattering (PVeS) introduction and history ٠
- MOLLER experiment overview ٠
- Involvement and responsibilities of VT ٠
- Summary and current status of the project ٠

Measurement Of a Lepton Lepton Electroweak Reaction

Parity Violation in Electron Scattering

Parity operation is a mirror symmetry

Vz/

- ♦ flips the sign of spatial coordinates: $\mathcal{P}(x, y, z) \Rightarrow (-x, -y, -z)$
- Not conserved in weak interactions (Wu Experiment, 1956)
- Scattering of longitudinally polarized electrons from unpolarized targets •
- Change electron's helicity to mimic parity operation

Parity-violation creates tiny asymmetry (A_{PV}) in the detected flux between the beam's opposite helicity states:

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \quad \text{where } \sigma \sim |\mathcal{M}_{\gamma} + \mathcal{M}_{Weak}|^2 \rightarrow A_{PV} \approx \frac{2\mathcal{M}_{\gamma}(\mathcal{M}_{Weak})^*}{|\mathcal{M}_{\gamma}|^2}, \text{ at } Q^2 \ll (M_{Z^0})^2, A_{PV} \text{ is dominated by the interference between the weak and electromagnetic amplitudes}$$

PVeS Experiments Summary

- E122 1^{st} PVeS exp. (late 70's) at SLAC; PVDIS off D₂ target
- E158 PV in Møller scattering at SLAC (2005)
- Significant improvement over time:
 - Photocathodes
 - Polarimetry
 - Beam stability to nanometer level

PVeS has become a precision tool!

- Beyond standard model searches
- Strange quark form factors
- Neutron skin of a heavy nucleus
- QCD structure of the nucleon

State-of-the-art:

- Sub-part per billion statistical reach and systematic control
- Sub-1% normalization control

- Low noise electronics
- Radiation-hard detectors

Weak Mixing Angle Measurement – Standard Model Test

• MOLLER will have a factor of 5 improvement over E158 measurement

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = mE \frac{G_F}{\sqrt{2\pi\alpha}} \frac{4\sin^2\theta}{(3 + \cos^2\theta)^2} Q_W^e$$

- Measure A_{PV} to an uncertainty of 0.8 ppb to achieve a 2.4% measurement of Q_W^e
- Electron's weak charge at tree level in term of the weak mixing angle:

 $Q_W^e = 1 - 4\sin^2\theta_W \approx 0.075$

• MOLLER precision:

 $\delta(\sin^2\theta_W) = \pm 0.00023 \text{ (stat.)} \pm 0.00012 \text{ (syst.)} \Rightarrow 0.1 \%$

Interaction Lagrangian: e⁻

$$\mathcal{L}_{e_1 e_2} = \sum_{i,j=L,R} \frac{g_{ij}^2}{2 \Lambda^2} \bar{e}_i \gamma_\mu e_i \bar{e}_j \gamma^\mu e_j \quad \text{Sensitive up to:} \frac{\Lambda}{g} = 7.5 \text{ TeV}$$

Electroweak radiative corrections cause the running of $\sin^2 \theta_W$ 0.245 measurements proposed NuTeV Q_w(p) 0.240 (η)^{0.235} Q_w(APV) eDIS Tevatron LHC 0.230 MOLLEF SoLID Mainz-P2 1 0.225 0.001 0.01 0.1 100 1000 10000 0.0001 10 μ [GeV] The most precise Z-pole measurements of $\sin^2 \theta_W$ differ from each other by ~3 σ

MOLLER Experiment Overview

- The experiment's acceptance is determined by a specially designed collimator
 - Measure only forward or backward scattering in COM frame
- Spectrometer consists of a pair of 7-fold symmetry toroidal magnets
 - The odd-fold symmetry provides ~100% acceptance due to identical particle scattering
 - The toroidal magnets use a conventional resistive copper coil design
- The collimation system will protect the magnet coils from high rate, defines signal shape and remove backgrounds

MOLLER Equipment and VT Responsibilities

Scattered beam monitors (SBMs):

- Seven Large Angle Monitors (LAMs)
- Eight Small Angle Monitors (SAMs)
- **Integrating Cherenkov detectors**
- Sensitive to potential false asymmetry from rescattered background

Diffuse Beam Monitors (DBMs):

Fourteen DBMs (7 open in sectors and 7 in closed sectors)

Scanner Detectors (SDs)

- **One Upstream Scanner**
 - Scans in two dimensions
 - Counting and integrating mode Cherenkov detectors

Scanner

- Four Downstream Scanners
 - Each scanner scans radially in one dimension
 - Integrating Cherenkov detectors

Supported by MOLLER-NSF Midscale Funding Award, VT lead institutions

CNP Research Day, 12/08/23

Scanners

Large Angle Monitors (LAMs) Requirements

- Large angle, high rate, and small asymmetry
- "Null" asymmetry monitors as a check of helicity-correlated beam correction
- Monitor for potential false asymmetries from rescattered backgrounds
- Accepted flux is dominated by e-p elastic radiative tail
- Total rate gives stat. width ~3.3 x Ring 5 (main physics); smaller (7 vs. 33 ppb) asymmetry

 $e^{-/\pi}$ (KE>1 MeV) radial dist. at LAM plane

Large Angle Monitors (LAMs) Design

- Seven modules; one in each open sector
- Collar 2 (two Pb rings) blocks particles scattered (mostly secondaries) at large angles

45⁰ bevel

- LAM quartz sits between collar 2 outer and inner rings
- Quartz radiator \rightarrow 25×16.5×1 cm³, zero bounce design (no need of lightguide)
- PMTs and bevel part of quartz will be behind the shadow of collar 2 outer ring
- Similar operating conditions as main detector ring 5

PMT housings

Quartz radiator

3D printed case

Quartz

PMT

window

Scattered

flux

Small Angle Monitors (SAMs) Requirements

• Eight SAMs symmetric around azimuth

Jefferson Lab

- Small lab scattering angle ~0.1^o (50 mm 66 mm radial distance)
- High rate ~450 GHz per SAM, rate depends on at with azimuth the SAM is located
- Small asymmetry ~3 ppb, order of magnitude smaller than main Møller asymmetry
- "Null" asymmetry monitors as a check of helicity-correlated beam correction procedure
- Monitor for potential false asymmetries from rescattered backgrounds

CNP Research Day, 12/08/23

10

Small Angle Monitors (SAMs) Design and Radiation Damage Concern

- Small quartz block (1.6 x 2.0 x 0.6 cm³), air-core light guide, and PMT (Hamamatsu R375)
- Estimated total dose for 8256 hours of production running from simulation ✤ 170 Grad (MIP Energy Deposition method)
- Q_{weak} "SAM" quartz had dose of ~35 Grad with no evidence of damage
- ~57 Grad dose per year for MOLLER production running
 - New quartz replacement at the beginning of each calendar year can mitigate the risk of damage
 - PE yield could drop from ~ 8 PE to ~ 1 PE and the detectors would still satisfy their requirements

CNP Research Day, 12/08/23

Devi L. Adhikari

Dose from MIP energy deposition

L = 20mm

V = 16mm

Diffuse Beam Monitors (DBMs)

- The location just upstream of main detector array satisfies the requirements for diffuse beam monitor detectors
- Locate 14 DBM boxes: one bare ET 9305 QKB PMT and one PMT attached to quartz block 10 x 7.1 x 1.0 cm³ with optical glue in open and closed sectors
- "Shadow" of lead collar 2 will have no flux from primary interactions in target only secondary diffuse background is observed here
- Rate in each quartz DBM detector ~36 MHz during production running, dominated by secondary interactions

Upstream 2D Scanner Requirements and Goals

- Monitor scattered rate distribution for combination of two sectors at low and high beam currents; verify they are the same; monitor stability of kinematics and backgrounds
- Operates in counting and integrating modes
- Can monitor for shifts ~0.5 mm in the profile, which could happen from a drift of 10⁻³ in the B*dl of the spectrometer field
- Full scan in < 1 hour
- Can provide a more regular (if needed) monitor of the stability of the profile than the full tracking system which will only be deployed every few weeks

Upstream 2D Scanner Design and Expected Rate

- It uses the concept from Qweak (1×1 cm² quartz tile), air-core light guide, and ET 9305 QKB PMT ٠
- Will see a rate up to $\sim 2.62 \text{ MHz/}\mu\text{A}$

Rate Profile in Downstream Linear Scanners

MELLER

- Four 1-D scanners scan radially 55 75 cm at four azimuthal locations (just upstream SAM Z-location)
- Use magnet off spectrometer with thick carbon target
- Expected to pick off the outer edge of collimator 2 (acceptance defining collimator)
- Sharp transition of e-/ π rate around 650 mm radius is due to the acceptance defining collimator (collimator 2) cutoff

Downstream Linear Scanner Design

MELLER

- It uses 1×1 cm² quartz tile
- Air-core lightguide and ET 9305 QKB PMT (3-inch diameter window)
- Velmex sliding motion stage for linear motion
- Will be parked at larger radii when not in use

Summary And Current Status

- The MOLLER experiment will use PVeS to search new dynamics
 0.1% precision on sin²
 - 0.1% precision on $\sin^2_{\theta_W}$
- Currently working prototype testing; construction will begin soon (2024)
- CD-3A Approval in March 2023
- CD-2/3 Director's Review in August 2023
- CD-2/3 Independent Project Review in October 2023
 anticipate approval in March 2024
- VT is responsible for design, construction, and operation of various scattered beam monitors and scanners
 - Prototype detectors were tested at MAMI beam facility
 - Production of final detectors will take place over the next few months

MOLLER Experiment History and Current Status

MOLLER collaboration: ~160 authors, 37 institutions, 6 countries; Spokesperson: K. Kumar, U. Mass, Amherst

- JLab PAC approval Jan. 2009, JLab Director's review January 2010
- JLab PAC37 Ranking/Beam Allocation January 2011 (A rating, 344 PAC days)
- Strong endorsement from DOE Science Review in Sept. 2014
- Second Director's Review in December 2016
- DOE CD-0 status achieved in December 2016; paused in January 2017
- Project team formed in January 2019
- Director's Review in April 2019 Technical Readiness, Risk, Cost
- Director's Review in January 2020
- CD-1 Director's Review in August 2020
- DOE MOLLER CD-1 Independent Project Review, October 2020
- MOLLER-NSF Midscale Technical and Cost Review, October 2020
- MOLLER CD-1 Approved in December 2020
- MOLLER-NSF Midscale Funding Awarded, February 2021, VT lead institution
- DOE OPA IPR Annual Review, November 2021
- CD-3A Approval in March 2023
- CD-2/3 Director's Review in August 2023
- MOLLER CD-2/3 Independent Project Review in October 2023, anticipate CD-2/3 Approval in March 2024

Scattered beam monitors (SBMs):

- Seven Large Angle Monitors (LAMs)
- Eight Small Angle Monitors (SAMs)
- Integrating Cherenkov detectors
- Sensitive to potential false asymmetry from rescattered background
- Diffuse Beam Monitors (DBMs):
- Fourteen DBMs (seven bare PMTs and 7 PMTs plus quartz)

Scanner Detectors (SDs)

- One Upstream Scanner
 - Scans in two dimensions
 - Counting and integrating mode
- Four Downstream Scanners
 - Each scanner scans radially in one dimension
 - Integrating mode

CNP Research Day, 12/08/23

LAMs

Collar 2

rings

Devi L. Adhikari

Downstream Scanners SAMs

MOLLER detector CAD

Parity Operation and it's Violation in Electron Scattering

• Mirror symmetry \rightarrow inversion of spatial coordinates:

 $\mathcal{P}(x, y, z) \Longrightarrow (-x, -y, -z)$

- Not conserved in weak interactions
- Parity operation is same as changing helicity
 - change electron's helicity to mimic parity operation
- Parity-violation creates tiny asymmetry (A_{PV}) in the detected flux

