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Outline
• Parity-violating electron scattering (PVeS) introduction and history
• MOLLER experiment overview
• Involvement and responsibilities of VT
• Summary and current status of the project
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Parity Violation in Electron Scattering
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• Parity operation is a mirror symmetry
v  flips the sign of spatial coordinates: 𝒫(𝑥, 𝑦, 𝑧) ⟹ (−𝑥,−𝑦,−𝑧)

• Not conserved in weak interactions (Wu Experiment, 1956)
• Scattering of longitudinally polarized electrons from unpolarized targets
• Change electron’s helicity to mimic parity operation

• Parity-violation creates tiny asymmetry (APV) in the detected flux between the beam’s opposite helicity states:
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PVeS Experiments Summary
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(Aδ PVeS has become a precision tool!
• Beyond standard model searches
• Strange quark form factors
• Neutron skin of a heavy nucleus
• QCD structure of the nucleon

State-of-the-art:
• Sub-part per billion statistical 

reach and systematic control
• Sub-1% normalization control

• E122 – 1st PVeS exp. (late 70’s) at SLAC; PVDIS off D2 target
• E158 – PV in Møller scattering at SLAC (2005)

v Photocathodes
v Polarimetry
v Beam stability to 

nanometer level

v Cryotargets
v Low noise electronics
v Radiation-hard detectors

• Significant improvement over time:
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Weak Mixing Angle Measurement – Standard Model Test
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• MOLLER will have a factor of 5 improvement over E158 measurement 

𝐴!" =
𝜎# − 𝜎$
𝜎# + 𝜎$

= 𝑚𝐸
𝐺0
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• MOLLER precision: 

• Measure 𝐴!" to an uncertainty of 0.8 ppb to achieve a 2.4% 
measurement of 𝑄&'  

• Electron’s weak charge at tree level in term of the weak mixing 
angle:

𝑄&' = 1 − 4sin*𝜃& ≈ 0.075

𝛿 sin*𝜃& = ±0.00023 stat. ± 0.00012 syst. ⟹ 0.1	%

Electroweak radiative corrections 
cause the running of 𝐬𝐢𝐧𝟐𝜽𝑾

The most precise Z-pole measurements of 𝐬𝐢𝐧𝟐𝜽𝑾 
differ from each other by ~3𝜎

• Interaction Lagrangian:
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MOLLER Experiment Overview
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Parameter Value

𝐸 11 GeV

𝐸′ 2 − 9 GeV

𝜃!" 60° − 90°

Target 125 cm long LH2

Max. Luminosity 2.4×1039 cm-2 sec-1

Moller Rate @ 65 µA beam current 134 GHz

Run Time 344 PAC-days

Polarization ≈ 90	%

< 𝐴#$ > 33 ppb

Møller 
e-e

Elastic 
e-p

• The experiment's acceptance is determined by a specially designed collimator
v Measure only forward or backward scattering in COM frame

• Spectrometer consists of a pair of 7-fold symmetry toroidal magnets
v The odd-fold symmetry provides ~100% acceptance due to identical 

particle scattering
v The toroidal magnets use a conventional resistive copper coil design

• The collimation system will protect the magnet coils from high rate, defines 
signal shape and remove backgrounds

Simulated Møller and 
ep electron rates
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MOLLER Equipment and VT Responsibilities
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Scattered beam monitors (SBMs):
• Seven Large Angle Monitors (LAMs)
• Eight Small Angle Monitors (SAMs)
• Integrating Cherenkov detectors
• Sensitive to potential false asymmetry from rescattered 

background

Scanner Detectors (SDs)
• One Upstream Scanner

v Scans in two dimensions
v Counting and integrating mode Cherenkov detectors

• Four Downstream Scanners
v Each scanner scans radially in one dimension
v Integrating Cherenkov detectors

Diffuse Beam Monitors (DBMs):
• Fourteen DBMs (7 open in sectors and 7 in closed sectors)

Target Chamber
Collimator 1 & 2 Upstream 

Torus
Downstream 

Torus
Drift Region

Tracking 
Chambers

Main 
Detectors

Showermax

Pion 
Detectors

LAMs

SAMs

Downstream 
Scanners

Upstream 
ScannerDBMs

Møller main detector ring at 26.7 m from target center

Supported by MOLLER-NSF Midscale Funding Award, VT lead institutions
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Large Angle Monitors (LAMs) Requirements

• Large angle, high rate, and small asymmetry
• “Null” asymmetry monitors as a check of helicity-correlated beam correction
• Monitor for potential false asymmetries from rescattered backgrounds
• Accepted flux is dominated by e-p elastic radiative tail
• Total rate gives stat. width ~3.3 x Ring 5 (main physics); smaller (7 vs. 33 ppb) 

asymmetry

Process Rate 
(GHz)

<A> 
(ppb)

<E> 
(GeV)

Møller 10.5 10 1.3

Elastic ep 21.2 4 1.1

Inelastic ep 0.1 332

Total 31.8 7

Total=31.75 GHz

LAM1=4.72 GHz
LAM2=4.50 GHz
LAM3=4.44 GHz
LAM4=4.39 GHz
LAM5=4.40 GHz
LAM6=4.66 GHz
LAM7=4.64 GHz

e-/𝜋- (KE>1 MeV) XY dist. on LAM plane

L = 250 mm
W = 165 mm

IR = 1031.5 mm
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Large Angle Monitors (LAMs) Design

Collar 2 
outer ring

Collar 2 
inner ring

Barite wall LAM ring

Upstream 
scanner

PMT housings3D printed case

Quartz radiator

• Seven modules; one in each open sector
• Collar 2 (two Pb rings) blocks particles scattered (mostly secondaries) at large angles
• LAM quartz sits between collar 2 outer and inner rings
• Quartz radiator → 25×16.5×1 cm3, zero bounce design (no need of lightguide)
• PMTs and bevel part of quartz will be behind the shadow of collar 2 outer ring
• Similar operating conditions as main detector ring 5

LAMs looking 
downstream

450 bevel
PMT 

window

Quartz

Scattered 
flux
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Small Angle Monitors (SAMs) Requirements

• Eight SAMs symmetric around azimuth
• Small lab scattering angle ~0.10 (50 mm – 66 mm radial distance)
• High rate ~450 GHz per SAM, rate depends on at with azimuth the SAM is located
• Small asymmetry ~3 ppb, order of magnitude smaller than main Møller asymmetry
• “Null” asymmetry monitors as a check of helicity-correlated beam correction procedure
• Monitor for potential false asymmetries from rescattered backgrounds 

e-/!- distribution (2D) and different particles (radial) at SAM plane (Figure 154)
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Small Angle Monitors (SAMs) Design and Radiation Damage Concern

SAMs looking 
upstream

12

3
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5
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7
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• Small quartz block ( 1.6 x 2.0 x 0.6 cm3), air-core light guide, and PMT 
(Hamamatsu R375)

• Estimated total dose for 8256 hours of production running from simulation
v 170 Grad (MIP Energy Deposition method)

• Qweak “SAM” quartz had dose of ~35 Grad with no evidence of damage
• ~57 Grad dose per year for MOLLER production running

v New quartz replacement at the beginning of each calendar year can 
mitigate the risk of damage

v PE yield could drop from ~8 PE to ~1 PE and the detectors would still 
satisfy their requirements

Dose from MIP energy deposition

quartz

Domed end cap (0.012” 
wall thickness)

Aluminum penetration tube 
(0.065” wall thickness)

Air-core lightguide PMT and base

SAMs side 
view
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DBM Expected Rate (Figure 159)

DBM plane flux
Main detector plane flux

Scattered electron flux at MD and DBM plane 

DBM quartz 
region

Diffuse Beam Monitors (DBMs)
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• The location just upstream of main detector array satisfies the requirements for diffuse 
beam monitor detectors

• Locate 14 DBM boxes: one bare ET 9305 QKB PMT and one PMT attached to quartz 
block 10 x 7.1 x 1.0 cm3 with optical glue in open and closed sectors

• “Shadow” of lead collar 2 will have no flux from primary interactions in target – only 
secondary diffuse background is observed here

• Rate in each quartz DBM detector ~36 MHz during production running, dominated by 
secondary interactions

quartz

PMT and base

Light tight 
caps



CNP Research Day, 12/08/23 Devi L. Adhikari 13

Upstream 2D Scanner Requirements and Goals

• Monitor scattered rate distribution for combination of two sectors at low and high beam currents; verify 
they are the same; monitor stability of kinematics and backgrounds

• Operates in counting and integrating modes
• Can monitor for shifts ~0.5 mm in the profile, which could happen from a drift of 10-3 in the B*dl of the 

spectrometer field
• Full scan in < 1 hour
• Can provide a more regular (if needed) monitor of the stability of the profile than the full tracking system 

which will only be deployed every few weeks
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Upstream 2D Scanner Design and Expected Rate

• It uses the concept from Qweak (1×1 cm2 quartz tile), air-core light guide, and ET 9305 QKB PMT
• Will see a rate up to ~2.62 MHz/µA 

2D motion stage

1×1 cm2 quartz

Air-core light 
guide

PMT

e-/𝜋- (KE>1 MeV) XY dist. at US scanner plane

Scanner full range of 
motion

Typical 2D scan 
coverage
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Rate Profile in Downstream Linear Scanners

• Four 1-D scanners scan radially 55 – 75 cm at four azimuthal locations (just upstream SAM Z-location)
• Use magnet off spectrometer with thick carbon target
• Expected to pick off the outer edge of collimator 2 (acceptance defining collimator)
• Sharp transition of e-/ 𝜋- rate around 650 mm radius is due to the acceptance defining collimator (collimator 2) cutoff

e-/𝜋- (KE>1 MeV) XY dist. at DS scanner plane

4 cm thick carbon target 
open sectors only

Collimator 2 
outer edge

e-/𝜋- (KE>1 MeV) radial dist. at DS scanner plane
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Downstream Linear Scanner Design

• It uses 1×1 cm2 quartz tile
• Air-core lightguide and ET 9305 QKB PMT (3-inch diameter window)
• Velmex sliding motion stage for linear motion
• Will be parked at larger radii when not in use

quartz

Air-core 
lightguide 

(inside)

PMT and  base
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Summary And Current Status
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• The MOLLER experiment will use PVeS to search new dynamics

v 0.1% precision on sin:"
*

• Currently working prototype testing; construction will begin 
soon (2024)

• CD-3A Approval in March 2023
• CD-2/3 Director’s Review in August 2023
• CD-2/3 Independent Project Review in October 2023

v anticipate approval in March 2024
• VT is responsible for design, construction, and operation of 

various scattered beam monitors and scanners
v Prototype detectors were tested at MAMI beam facility
v Production of final detectors will take place over the next 

few months

Electroweak radiative corrections 
cause the running of 𝐬𝐢𝐧𝟐𝜽𝑾

The most precise Z-pole measurements of 𝐬𝐢𝐧𝟐𝜽𝑾 
differ from each other by ~3𝜎
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MOLLER Experiment History and Current Status
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MOLLER collaboration: ~160 authors, 37 institutions, 6 countries; Spokesperson: K. Kumar, U. Mass, Amherst
• JLab PAC approval Jan. 2009, JLab Director’s review January 2010
• JLab PAC37 Ranking/Beam Allocation January 2011 (A rating, 344 PAC days)

• Strong endorsement from DOE Science Review in Sept. 2014
• Second Director’s Review in December 2016
• DOE CD-0 status achieved in December 2016; paused in January 2017
• Project team formed in January 2019
• Director’s Review in April 2019 – Technical Readiness, Risk, Cost

• Director’s Review in January 2020 
• CD-1 Director’s Review in August 2020
• DOE MOLLER CD-1 Independent Project Review, October 2020
• MOLLER-NSF Midscale Technical and Cost Review, October 2020
• MOLLER CD-1 Approved in December 2020

• MOLLER-NSF Midscale Funding Awarded, February 2021, VT lead institution
• DOE OPA IPR Annual Review, November 2021
• CD-3A Approval in March 2023

• CD-2/3 Director’s Review in August 2023

• MOLLER CD-2/3 Independent Project Review in October 2023, anticipate CD-2/3 Approval in March 2024
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MOLLER Equipment and VT Responsibilities
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Scattered beam monitors (SBMs):
• Seven Large Angle Monitors (LAMs)
• Eight Small Angle Monitors (SAMs)
• Integrating Cherenkov detectors
• Sensitive to potential false asymmetry from 

rescattered background

Scanner Detectors (SDs)
• One Upstream Scanner

v Scans in two dimensions
v Counting and integrating mode

• Four Downstream Scanners
v Each scanner scans radially in one 

dimension
v Integrating mode

Diffuse Beam Monitors (DBMs):
• Fourteen DBMs (seven bare PMTs and 7 

PMTs plus quartz)

DBMs

Upstream 
Scanner

SAMs
Downstream 

Scanners
LAMs

MOLLER detector CAD
Collar 2 

rings
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Parity Operation and it’s Violation in Electron Scattering
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• Mirror symmetry à inversion of spatial coordinates:
𝒫(𝑥, 𝑦, 𝑧) ⟹ (−𝑥,−𝑦,−𝑧)

• Not conserved in weak interactions
• Parity operation is same as changing helicity

v change electron’s helicity to mimic parity operation
• Parity-violation creates tiny asymmetry (APV) in the detected flux

Mirror

Parity operation

𝑝⃗ −𝑝⃗

𝑠𝑠

Right-handed Left-handed

ℎ = 𝑠 ⋅ 𝑝̂ 	= +𝑠 ℎ = 𝑠 ⋅ −𝑝̂ 	= −𝑠

Wu Experiment (1956)
The first experimental observation of parity-

violation in weak interaction


