Galactic Neutrinos: Linking the Dynamics of SNe

CNP Day 2023 Sarah Healy

> VIRGINIA TECH

Table of contents

Introduction

Galactic CCSNe, SN progenitors

Messenger signals of CCSN

 Interior of SN: Neutrinos and Gravitational waves, Exterior of SN: EM waves, Linking the two, SN 1987A

What we are doing to prepare

• Compilation of RSG list, Multi-messenger Astronomy, Neutrino point, Neutrino triangulation, distance estimated from Neutrinos

Introduction

Galactic CCSNe

Galactic SN rate is ~1-4 per century

The last Galactic supernova (SN) predates the invention of telescopes, neutrino detectors, and gravitational wave

		Extremely nearby event @ $O(1 \text{ kpc})$ (see Section 4)		Galactic event @ O(10 kpc) (see Section 3)		Extragalactic event @ O(1 Mpc) (see Section 5)		
Signals		Detector	Horizon	Detector	Horizon	Detector	Horizon	
Neutrino	Pre-SN $\bar{\nu}_e$	KamLand	<1 kpc	-		-		
	$\bar{\nu}_e$ burst	SK	Galaxy ^a	SK	Galaxy	HK	<a few="" mpc<="" td="">	
	$\bar{\nu}_{e}$ burst	JUNO (201X-)	Galaxy	JUNO	Galaxy	-		
	v_e burst	DUNE (20XX-)	Galaxy	DUNE	Galaxy	_		
GW	Waveform ^c	$H-L-V-K^d$	<several kpc<="" td=""><td></td><td></td><td></td><td></td></several>					
	detection		- C	H-L-V-K	$\leq 8.5 \text{ kpc}$	ET (20XX-)	$\leq 100 \text{ kpc}$	
EM	Optical	<1 m class		$1-8 \text{ m class}^b$		<1 m class		
	NIR	<1 m class		<1 m class		<1 m class		

 Table 1. Detectable signals, detectors, and their horizons.

Nakamura et al. 2016

CC Supernova Progenitors

Figure 8.2. The two best cases of RSG SN progenitors detected in pre- and post-explosion imaging. Top panel: adapted from Mattila et al. (2010). The left panel shows pre-explosion VIK_s imaging of the SN 2008bk explosion site (marked with yellow crosshairs) from the VLT, combining V and J band imaging from 16 Sept 2001 with K_s imaging taken on 17 Oct 2005; the right panel shows post-explosion VIK_s imaging of the same site from the NTT, combining V and J band imaging from 16 Sep 2010 with K_s imaging from 29 Oct 2010. Bottom: reproduced from Maund et al. (2014). The left panel shows pre-explosion (0.44 years before discovery) HST ACS/WFC F814W imaging of the SN 2005cs explosion site (marked with crosshairs); the right panel shows HST ACS/WFC F814W imaging of the same site 5.09 years after the discovery of the SN. Pre-explosion imaging confirms low mass RSG are the direct progenitors of Type-IIP supernova

Lifetime of RSG phase: 0.5-2 Myr

CC triggered when fusion stops and gravity takes over

How is the shock revived?
1. Neutrino mechanism E(neutrino) Wilson (1985), ...
2. Phase transition E(gravity) Migdal et al (1971), ...
3. Magneto-rotational E(rotation) Bisnovatyi-Kogan (1976), ...

Levesque, E. M., 2017

Messenger signals of CCSNe

S. E. Gossan et al. 2019

Frequency range of GWs

Mechanism of production

Epoch of first emitted GWs

Estimates of progenitor's rotation rates

Gravitational Waves

Only a few times 10^{46} erg released as GW

Nakamura et al. 2016

Neutrinos

Properties of nuclear burning stages in a 15 $\rm M_{\odot}$ star

Stage	Time Scale	Fuel or Product	Ash or Product	Temperature (10^9K)	Density (gm/cm^3)	Luminosity (solar units)	Neutrino Losses (solar units)
Hydrogen	11 My	Н	He	0.035	5.8	28,000	1800
Helium	2.0 My	• He	C,O	0.18	1390	44,000	1900
Carbon	2000 y	С	Ne,Mg	0.81	2.8 x 10 ⁵	72,000	3.7 x 10 ⁵
Neon	0.7 y	Ne	O,Mg	1.6	1.2 x 10 ⁷	75,000	1.4 x 10 ⁸
Oxygen	2.6 y	o,Mg	Si,S,Ar,Ca	1.9	8.8 x 10 ⁶	75,000	9.1 x 10 ⁸
Silicon	18 d	Si,S,Ar, Ca	Fe,Ni,Cr, Ti,	3.3	4.8 x 10 ⁷	75,000	1.3 x 10 ¹¹
lron core collapse	~1 s	Fe,Ni,C r,Ti	Neutron Star	> 7.1	>7.3 x 10 ⁹	75,000	>3.6x 10 ¹⁵

Woosley and Janka 2005

Synthesized in the hot, innermost regions

Figure 3. Scheme of a supernova explosion. Figure from F. Kitaura.

Insights into the unobservable physical processes that initiate the blast

Teresa Undagoitia

D Shock propagation and ve burst

Reveal information about the SN ejecta and the environment

IR

• Nature and spatial distribution of the dust grains

Radio and X-ray

Mass-loss rates of the progenitor

Spectra

- Line width wind velocity of the progenitor
- Line strength relative abundances of the elements in the wind

CSM ionization state

Amount of ionizing radiation emitted by the explosion

Adapted from Ofer Yaron

Gravitational

Waves

Neutrinos

Electromagnetic Waves

Completing the Picture

0

This science cannot be tested with extra-galactic SN

The absolute majority of the supernovae have so far been observed only through their EM signature

Supernova 1987A

Occurred in LMC

Blue supergiant progenitor

HST, NASA, ESA Detections in EM waves including X-rays, γ -rays, and neutrinos

CERN courier

What we are doing to prepare

Compiling List of Progenitors

Multimessenger Astronomy

Interpretation of joint observation of multiple messengers to optimize science

SuperNova Early Warning System (SNEWS)

- First established multi-messenger networks
- Uses supernova neutrinos

American Association of Variable Star Observers (AAVSO)

• Monitoring candidates long before collapse

Warning is imperative to getting complete observations of progenitors and SNe

Nakamura et al. 2016

Neutrino Triangulation

The supernova can be pointed to by use of multiple detectors around the earth and relative timing of signals

Needs for calculation

- Large statistics
- High flux component of the signal

Needs for detection

 coordination between multiple detectors or future mega-detectors

- Two detectors: gives ring on the sky in which the supernova is located
- Three detectors: Location of the supernova is given as two spots
- Four detectors: A single spot on the sky determines loca**tion**

Distance Estimates from Neutrinos

Two method utilized in snewpdag

1. IMF Method

Compares the observed number of events (n_{50}) to the expected value weighted over the initial mass function

[W60] C10 -	* * *	f_{Δ} Method + IMF Method + f_{Δ} Method IMF Method	Fime Syst · Time Sys	st					'
X-46 ·			-	*					
CD-34 11794 -		*							
HD 303250	* 2	4	6	8 Dista	¹⁰ nce (kp	12 DC)	14	16	

2. The f_Method Compares f_= N(50)/N(100-150) and its linear relation with n_{50}

Calculations based on CD-34 11794 (263° , -34° , and 4.1 kpc) as the progenitor. 13 stars lie within the 90% credible region with 2 of those matching the combined distance estimation and angular resolution.

Calculations based on X-46 (113°, -22° and 7.6 kpc) as the progenitor. 105 stars lie within the 90% credible region with 2 of those matching the combined distance estimation and angular resolution.

Calculations based on [W60] C10 (83° , - 67° , 12.9 kpc) as the progenitor. 186 stars lie within the 90% credible region with 3 of those matching the combined distance estimation and angular resolution.

Calculations based on HD 303250 (161_{\circ} , -58 $_{\circ}$, and 2.4 kpc) which lies within cluster CAR OB1 as the progenitor. 85 stars lie within the 90% credible region with 20 of those matching the combined distance estimation and angular resolution.

Summary

The next galactic SN gives us the chance to gain the most complete data set for CCSN.

EM waves, Neutrinos, and gravitational waves together give a complete picture of the SN

We have prepared by compiling a list of possible candidates, and worked with SNEWS to inform their coincidence network, including pointing and distance estimations. Extra Slides

Neutrino Pointing

Neutrino burst signal can be used for pointing

Does require two things:

- 1. The interaction detected to have an intrinsic directionality
- 2. The detector being able to exploit that directionality

Neutrino-Electron elastic scattering Most promising method Electron gets kicked in the direction of the neutrino Photon can be detected Relatively small cross section

Channel	Observable(s)
$ u_x + e^- \rightarrow \nu_x + e^- $	С
$\bar{\nu}_e + p \rightarrow e^+ + n$	C, N, A

We compiled a catalog of 676 Milky Way RSGs candidates

- Using two complementary methods for obtaining T_{eff}
- Determined bolometric luminosity
- Compared to stellar evolutionary tracks and galactic AGB surveys
- Took into account uncertainties (79)

Included details of each star's known characteristics

Exploration of the RSG's stellar radii range and mass-loss rates match predicted values and its spatial distribution shows current limitations

In combination with the intense neutrino burst from CC, our RSG catalog can help in prioritizing locations to observe

-10A (55.4%) -8 B (39.2%) D (5.4%) -6 M_{bol}[mag] Log<u>L</u> C (0.0%) -4 7 E (0.0%) -2 Humphrey RSGs* • RSGC2 RSGC3 Levesque RSGs • NGC 7419 • RSGC1 2 1.8 3.7 $3.6 3.5 \\ Log(T_{eff}[K])$ 3.4 3.3

156 Galactic RSGs

