Detections Prospects of the DSNB w/ Simulations and Star Formation Measurements

Nick Ekanger CNP Day 2023

Outline

- 1. CCSNe and neutrinos
- 2. DSNB modeling ingredients
 - Neutrino emission spectra from simulations
 - Core collapse rate from measurements
 - Neutrino detectors
- **3**. Detection prospects

CCSNe and Neutrinos

Core-collapse supernova (CCSN)

Neutrinos from CCSNe

- O(10) MeV neutrinos emitted over ~10s
 - Approx thermal emission
 - Accretion \rightarrow higher energy neutrinos
 - PNS cooling → lower energy neutrinos
 - > 50% of energy liberated in cooling phase

CCSNe give rise to the DSNB

John Beacom, The Ohio State University

Neutrino Platform Pheno Week, CERN, March 2023

DSNB Modeling Ingredients

DSNB modeling ingredients

$$R_{\nu} = \frac{N_t \int dE \,\sigma_{\nu}}{\int dz \,c} \frac{dN}{dE'} (1+z) \frac{R_{\rm CC}}{dz} \left| \frac{dt}{dz} \right|$$

[2]

[1] **Ekanger**+ 2022, Impact of late-time neutrino emission on the DSNB [2] Madau and Dickinson 2014

DSNB modeling ingredients

[1] Ekanger+ 2022, Impact of late-time neutrino emission on the DSNB
[2] Madau and Dickinson 2014
[3] Abe+ 2011

Updating neutrino emission modeling

 $R_{\nu} = N_t \int dE \, \sigma_{\nu} \int dz \, c \frac{dN}{dE'} (1+z) R_{\rm CC} \left| \frac{dt}{dz} \right|$

[1], [2]

- Tune analytic function to simulation data
- ~5s sim data + >5s analytic function
- Done for many progenitors

Updating rate of core collapse

 $R_{\nu} = N_t \int dE \,\sigma_{\nu} \int dz \, c \, \frac{dN}{dE'} (1+z) \frac{dt}{dz} \left| \frac{dt}{dz} \right|$

- Directly measuring difficult, rely on indicators of star formation rate: ${\bf SFRD} \propto R_{CC}$

Updating rate of core collapse

 $R_{\nu} = N_t \int dE \, \sigma_{\nu} \int dz \, c \, \frac{dN}{dE'} (1+z) \frac{dt}{dz} \left| \frac{dt}{dz} \right|$

- Directly measuring difficult, rely on indicators of star formation rate: ${\bf SFRD} \propto R_{CC}$

Detecting the DSNB

 $R_{\nu} = \frac{N_t \int dE \, \sigma_{\nu}}{\int dz \, c \, \frac{dN}{dE'} (1+z) R_{\rm CC} \left| \frac{dt}{dz} \right|}$

- Super Kamiokande (SK), water Cherenkov
- IBD: $\bar{v}_e + p \rightarrow e^+ + n$ • *Gadolinium upgrade (SK-Gd)

Detection Prospects

Recent limits

[1] Ando, **Ekanger+** 2023, Diffuse neutrino background from past CCSNe

- SK-Gd probing most optimistic models
- Publicly available Python code to estimate the DSNB flux
 - Green, Blue, Orange created with code

Projecting DSNB detection

- SK-Gd and JUNO currently running
- Large uncertainties
- Reducing background rate
- Potential detection by 2030
 - Significant by 2035

Additional neutrino experiments

JUNO: -Running -Backgrounds

HK: -Scaled-up SK -SK techniques -Gd?

19

Summary

- Diffuse signal of ~10 MeV neutrinos from SNe \rightarrow DSNB
- Updated DSNB modeling
 - Simulations and analytic techniques \rightarrow neutrino emission
 - Star formation rate measurements \rightarrow core collapse rate
- Detection on the horizon with current and future detectors
 - SK-Gd + JUNO \rightarrow 2030s, also HK, DUNE

Backup Slides

Correlation method for late phase

• Correlation with long term 1D simulations

Detector stats and SFRD database

• SK-Gd (22.5 kton, 9.3 – 31.3 MeV)

	Ordering	Fiducial	SFRD err	LP err	BH err
$R_{ u}$	NO	3.57	$^{+0.28}_{-0.28}$	$^{+0.00}_{-1.58}$	$^{+0.82}_{-1.94}$
$[yr^{-1}]$	IO	2.85	$^{+0.28}_{-0.28}$	$^{+0.00}_{-1.07}$	$^{+0.17}_{-1.30}$
ϕ	NO	5.10	$^{+0.40}_{-0.40}$	$^{+0.00}_{-2.04}$	$^{+0.50}_{-2.70}$
$[\mathrm{cm}^2~\mathrm{s}^{-1}]$	IO	4.10	$^{+0.40}_{-0.40}$	$^{+0.00}_{-1.36}$	$^{+0.20}_{-1.92}$

• JUNO, HK, DUNE

	Ordering	Mass	E_{ν}	$R_{ u}$	ϕ
		[kton]	[MeV]	$[yr^{-1}]$	$[\mathrm{cm}^2~\mathrm{s}^{-1}]$
JUNO	NO (IO)	17	12-30	2.07(1.65)	2.17(1.73)
HK	NO (IO)	187	20-30	7.70(6.10)	4.10 (3.20)
HK-Gd	NO (IO)	187	10-30	27.60(22.00)	36.50 (29.10)
DUNE	NO (IO)	40	16-40	5.70(5.30)	1.81(1.73)

SFRD database

Error plots

Detection rate equation

$$R_{\nu} = N_t \int dE \, \sigma_{\nu} \int dz \, c \, \frac{dN}{dE'} (1+z) R_{\rm CC} \left| \frac{dt}{dz} \right|$$

where E' = E(1+z) and $|dz/dt| = H_0(1+z)[\Omega_m(1+z)^3 + \Omega_\Lambda]^{1/2}$.

To account for neutrino emission from both successful and failed supernovae, we compute the total flux as the sum:

$$\left. \frac{d\phi}{dE} \right|_{\text{tot}} = (1 - f_{\text{BH}}) \frac{d\phi}{dE} \Big|_{\text{s}} + f_{\text{BH}} \frac{d\phi}{dE} \Big|_{\text{f}}, \qquad (5)$$

where subscripts s and f indicate successful and failed supernova, respectively. We also consider the Mikheyev-Smirnov-Wolfenstein (MSW) effect for neutrino oscillations:

$$\frac{d\phi}{dE}_{\nu_e}^{\text{obs}} \approx \begin{cases} \frac{d\phi}{dE}_{\nu_x} \text{ (NO)}, \\ \frac{d\phi}{dE}_{\nu_e} \sin^2 \theta_{12} + \frac{d\phi}{dE}_{\nu_x} \cos^2 \theta_{12} \text{ (IO)}, \end{cases}$$
(6)

$$\frac{d\phi}{dE_{\bar{\nu}_e}}^{\text{obs}} \approx \begin{cases} \frac{d\phi}{dE_{\bar{\nu}_e}} \cos^2 \theta_{12} + \frac{d\phi}{dE_{\nu_x}} \sin^2 \theta_{12} \text{ (NO)}, \\ \frac{d\phi}{dE_{\nu_x}} \text{ (IO)}, \end{cases}$$
(7)

where NO and IO are the normal and inverted mass orderings, respectively, $\cos^2 \theta_{12} \approx 0.7$, and $\sin^2 \theta_{12} \approx 0.3$

SFRD binning

• Simple and weighted averages

SK-Gd upgrade

Vertices within 50cm