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The study of quantum foundations

• Early debates/studies on the foundations of QM mostly
concerned its interpretations.

• Difficult to test with actual experiments.

• John Bell’s work (1964) codified our intuition about the
classical world in the form of inequalities which allowed us to
look for their violations experimentally.

• QM, and any theory that isn’t classical, violates Bell
inequalities.

• This paved a path to study quantum foundations in a rigorous
and experimentally testable way.
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Where does our work fit in?

One way to study the foundations of QM is by generalizing
its mathematical framework, which is the focus of this talk.

• Better understanding: Relaxing the mathematical structure
and generalizing QM can give insights into the aspects that
were generalized.

• New phenomenology: It could describe physical phenomena
not present in canonical QM.

• More parameters =⇒ Wider testing: It could allow for a wider
testing of certain aspects of QM.
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Generalizations of quantum mechanics

• Canonical QM can be generalized in several distinct directions:
Non-linear Schrödinger equation, replace C with H, etc.

• QM has a rigid structure =⇒ Changes in dynamics can have
unphysical consequences.

• For example, Weinberg’s non-linear QM allows for FTL
communication!

• In general, new parameters that quantify the deviation from
QM should be strongly constrained.

• Our work generalizes QM through its geometric formulation.
1

1
This formulation was developed in Kibble (’79), Heslot (’85), Ashtekar (’97), Brody (’99) and more.
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Geometric quantum mechanics: Structure I

• Vector space CN = Vector space R2N + Additional structure.

• To see that, write ψ ∈ C as a vector in R2:

ψ = ψα + iψβ → ψ⃗ =

[
ψα
ψβ

]
.

• Then i → J =

[
0 −1
1 0

]
, J2 = −I . Jψ⃗ =

[
−ψβ
ψα

]
.

Re
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−1 1
i

i
ziz
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Geometric quantum mechanics: Structure II

• The complex inner product between ψ = ψα + iψβ and
ϕ = ϕα + iϕβ is given by

⟨ψ|ϕ⟩ = ψ∗ϕ = (ψαϕα + ψβϕβ)︸ ︷︷ ︸
ψ⃗·ϕ⃗

+i (ψαϕβ − ψβϕα)︸ ︷︷ ︸
ψ⃗×ϕ⃗

.

• So the probability amplitude is given by

|⟨ψ|ϕ⟩|2 = |ψ⃗ · ϕ⃗|2 + |ψ⃗ × ϕ⃗|2.
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Geometric quantum mechanics: Dynamics
• Expand a state in terms of its energy eigenstates as
|ψ⟩ =

∑
n ψn |n⟩.

iℏ
∂

∂t
|ψ⟩ = H |ψ⟩ =⇒ ψn = Nn e−iωnt ,

where H |n⟩ = ℏωn |n⟩.

• Write ψn = qn + ipn. Then ψ⃗(t) = Nn

[
cos (ωnt)

− sin (ωnt)

]
, and

dqn
dt

= ωnpn,
dpn
dt

= −ωnqn.

• These are the classical Hamilton equations for coupled
harmonic oscillators!

H =
∑
n

1

2
ωn(q

2
n + p2n).
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Generalization of geometric quantum mechanics

A generalization suggests itself: Replace the dynamics of the
harmonic oscillator with a more complicated Hamiltonian.
But not every arbitrary extension will be consistent and phys-
ically sensible!

• We extend this dynamics to that of an asymmetric top, with
two conserved quantities

E =
q21
2I1

+
q22
2I2

+
q23
2I3

, and L2 = q21 + q22 + q23 .

• The equations of motion are given by

dqi
dt

= ϵijk

(
1

Ij
− 1

Ik

)
qjqk .
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Jacobi elliptic functions
• The solution of the above equations of motion is given in
terms of Jacobi elliptic functions.

q1(t) = N1 cn(Ωt, k),

q2(t) = −N2 sn(Ωt, k),

q3(t) = −N3 dn(Ωt, k).

• These functions appear when parametrizing the arc-length of
an ellipse of eccentricity k .

sn(u, k) =

(
1 +

k2

16
+

7k4

256

)
sin v +

(
k2

16
+

k4

32

)
sin(3v) + · · ·

cn(u, k) =

(
1− k2

16
− 9k4

256

)
cos v +

(
k2

16
+

k4

32

)
cos(3v) + · · ·

dn(u, k) =

(
1− k2

4
− 5k4

64

)
+

(
k2

4
+

k4

16

)
cos(2v) + · · ·
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Consequences of the generalized dynamics
• The wavefunction is replaced by

ψ⃗n = Nn

[
cos (ωnt)

− sin (ωnt)

]
︸ ︷︷ ︸

|ψ⃗|2 = N2
n

→ Ψ⃗n = An

 cξ cn(Ωnt, k)
−κξ sn(Ωnt, k)
−sξ dn(Ωnt, k)


︸ ︷︷ ︸

|Ψ⃗|2 = A2
n

,

where cξ = cos ξ, sξ = sin ξ, κξ =
√
c2ξ + k2s2ξ , and

0 ≤ k < 1 and −π
2 ≤ ξ ≤ π

2 are the deformation parameters.

• When k = ξ = 0, Ψ⃗n → ψ⃗n and the canonical QM limit is
recovered.

• The inner product is generalized to

|⟨Ψ|Φ⟩|2 = (Ψ⃗n · Φ⃗n)
2 + (Ψ⃗n × Φ⃗n) · (Ψ⃗n × Φ⃗n).

• Generalized probability amplitude =⇒ Observable
consequences!
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Phase space of Nambu
2

quantum mechanics

The parameters k ∼ eccentricity and ξ ∼ size.

Figure: The colored lines in each figure indicate ξ = 0 (Black), ξ = π/8 (Blue), ξ = π/4 (Orange), ξ = 3π/8
(Green), and ξ = π/2 (Red). When ξ = 0, the trajectory always follows the equator regardless of the value of k.

2
The reason for this name is explained in Minic & Tze, Phys.Lett.B 536 (2002) 305–314.
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Neutrino oscillation probability
• Flavor eigenstates of neutrinos, |α⟩ and |β⟩, are

superpositions of their mass eigenstates, |1⟩ and |2⟩.

|α⟩ = cos θ |1⟩ + sin θ |2⟩
|β⟩ = − sin θ |1⟩ + cos θ |2⟩

• This causes the phenomena of interference and oscillation.

• Neutrino oscillation is a function of the ratio (∆t/E ). For
canonical QM,

P(α→ β) = sin2 2θ sin2
(
∆m2L

4E

)
, L ≈ c∆t.

For Nambu QM upto O(k2),

P(α→ β) =

(
c2ξ +

k2

2
s2ξ

)
sin2 2θ sin2

(
∆m2L

4E

)
.

Atmospheric neutrino data can be used to constrain these parameters. See arXiv:2310.07457.
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Neutrino oscillation = Double slit experiment

A

time

β1

α1

B

C

D

β2

α2

P(α,α)(A → D) = |α1α2 + β1β2|2

= |α1|2|α2|2︸ ︷︷ ︸
PACD

+ |β1|2 |β2|2︸ ︷︷ ︸
PABD

+2Re(α∗
1α

∗
2 β1β2)︸ ︷︷ ︸

I2(α,β)

.
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Legget-Garg inequality and neutrino oscillation
• Consider the two-flavor case again with flavors α and β. Let

Q = +1 if a neutrino is found in flavor α and Q = −1 if in β.

⟨Q(ti )Q(tj)⟩ =
∑
i ,j

PijQ(ti )Q(tj).

• For classical theories

K3 := ⟨Q(t0)Q(t1)⟩+ ⟨Q(t1)Q(t2)⟩ − ⟨Q(t0)Q(t2)⟩ ≤ 1.

• Quantum mechanics violates this Legget-Garg
3
inequality

(K3 > 1). Has been confirmed by tests on various atomic
systems.

• Due to (∆t/E ) dependence, we can simply measure neutrinos
at the same time but with different energies!

4

3
A. J. Leggett and A. Garg PRL. 54, 857

4
Formaggio et. al. Phys. Rev. Lett. 117, 050402
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Testing LG with neutrino oscillations
• For two flavors,

⟨QiQj⟩ =
∑

Qi ,Qj=±1

Qi Qj Pij(ti , tj)

= 2Pαα(ti , tj)− 1

• Therefore,

K3 = 1− 4 |β1|2|β2|2 − 4 Re(α∗
1α

∗
2β1β2)︸ ︷︷ ︸

2 I (α,β)

.
5

• Note that the term 2 I (α, β) makes K3 > 1 possible.

• LG tests interference. That means it can be used to test or
constrain a theory that predicts a different interference
pattern than canonical QM.

5
See D. S. Chattopadhyay and A Dighe (arXiv:2304.02475), where a different parameter is also proposed as a
measure of “quantumness”.
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Triple path interference

A

time

β1
γ1

α1

B

E

C

D

β2
γ2

α2

• In a triple slit experiment:

P(α,α)(A → D) = |α1α2 + β1β2 + γ1γ2|2 = PABD + PAED + PACD

+I2(α, β) + I2(α, γ) + I2(β, γ)

• The quantity I3(α, β, γ) is non-zero only when there is
triple-path interference.

6

6
Sorkin (’94) has studied this hierarchy in detail. Also see PRD 105, 115013 by PH, HM, DM, RP, TT for relation
to neutrinos.
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Phenomenology beyond quantum mechanics

• ψ⃗m × ϕ⃗n calculates the area of the parallelogram spanned by
the vectors ψ⃗m and ϕ⃗n. It gives rise to non-zero interference
in QM.

• It might be possible to include a triple-interference term in
Nambu QM if we can incorporate a volume element

ψ⃗m · (ϕ⃗n × χ⃗k)

into a unitary formulation.

• This in turn would modify LG and violate it more strongly
than canonical QM.
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Summary

• The foundations of quantum mechanics can be confronted
with experiments.

• Generalizations of QM can help test old assumptions and
provide new phenomenology.

• Nambu QM extension can potentially provide a model for two
beyond QM phenomena: the triple path interference and
super-quantum correlations.

• Neutrinos might turn out to be ideal systems for probing these
issues experimentally.
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